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ABSTRACT:

This study presents a theoretical model for predictions of nearshore hydrodynamic characteristics and
the local sediment transport rate along long, straight beaches. The wave may be periodic or random, the
beach may be plane or barred, and the bed may be concrete or covered with movable natural sand grains.
The present model must be efficient and flexible so that it can accommodate iterative computations for
time-varying and, hence, arbitrary beach profiles.

The nearshore hydrodynamics model consists of wave, surface roller, and nearshore current models.
Both wave and surface roller models are based on simple energy balance equations and, based on these
models, the nearshore current is determined from two-layer 2DH momentum equations. Coupled with a
simple turbulent eddy viscosity model, vertical profiles of mean shear current are analytically obtained.
The model accounts for advective interactions between waves, surface rollers, and currents and, coupled
with the surface roller model, explain the shoreward shift of the peak longshore current velocity. The
model applies a modified version of Madsen’s (1994) wave-current bottom boundary layer model to spec-
ify the bottom boundary condition from knowledge of equivalent bottom roughness scaled by a sediment
diameter.

Introducing the predicted nearshore hydrodynamic characteristics, we extend the conceptual bedload
and associated suspended load sediment transport models (Madsen 2001) to the surf zone. The extended
sediment transport model accounts for breaking wave effects such as an increase of turbulence due to
broken waves and change of the momentum force balances due to breaking waves and surface rollers.
The model predicted the peaks of longshore sediment transport observed near the shoreline and the wave
breaking point for plunging breakers.

DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.
All product names and trademarks cited are the property of their respective owners. The findings of this report are not
to be construed as an official Department of the Army position unless so designated by other authorized documents.
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Abstract

This study presents a theoretical model for predictions of nearshore hydrodynamic
characteristics and the local sediment transport rate along long, straight beaches. The
wave may be periodic or random, the beach may be plane or barred, and the bed may be
concrete or covered with movable natural sand grains. The present model must be
efficient and flexible so that it can accommodate iterative computations for time-varying
and, hence, arbitrary beach profiles.

The nearshore hydrodynamics model consists of wave, surface roller, and nearshore
current models. Both wave and surface roller models are based on simple energy
balance equations and, based on these models, the nearshore current is determined
from two-layer 2DH momentum equations. Coupled with a simple turbulent eddy
viscosity model, vertical profiles of mean shear current are analytically obtained. The
model accounts for advective interactions between waves, surface rollers, and currents
and, coupled with the surface roller model, explain the shoreward shift of the peak
longshore current velocity. The model applies a modified version of Madsen’s (1994)
wave-current bottom boundary layer model to specify the bottom boundary condition
from knowledge of equivalent bottom roughness scaled by a sediment diameter.

Introducing the predicted nearshore hydrodynamic characteristics, we extend the
conceptual bedload and associated suspended load sediment transport models (Madsen
2001) to the surf zone. The extended sediment transport model accounts for breaking
wave effects such as an increase of turbulence due to broken waves and change of the
momentum force balances due to breaking waves and surface rollers. The model
predicted the peaks of longshore sediment transport observed near the shore line and
the wave breaking point for plunging breakers.

Thesis Supervisor: Ole S. Madsen
Title: Professor, Department of Civil and Environmental Engineering



Preface

This study was funded by Headquarters, U.S. Army Corps of Engineers, under
Contract No. DACA42-01-C-0017, through the “Advanced Nearshore Circulation and
Sediment Transport” and “Large-Scale Laboratory Investigation of Longshore Sediment
Transport” Work Units of the Navigation Systems Research Program. The research was
conducted under the general supervision of Mr. Thomas Richardson, Director, Coastal
and Hydraulics Laboratory (CHL); Dr. William D. Martin, Deputy Director, CHL;
Mr. Bruce Ebersole, Chief, Flood and Storm Protection Division; Mr. Ty Wamsley,
Chief, Coastal Processes Branch; Dr. Sandra Knight, Technical Director, Navigation
Systems Research Program; and Mr. James Clausner, Program Manager, Navigation
Systems Research Program.

This report is a dissertation by Dr. Yoshimitsu Tajima in partial fulfillment of the
requirements for the degree of Doctor of Philosophy from the Massachusetts Institute of
Technology, Cambridge, MA. Dr. Ole S. Madsen served as advisor to Dr. Tajima.

The authors would like to thank Dr. Heidi M. Nepf, MIT, and Dr. John H.
Trowbridge, Woods Hole Oceanographic Institution, for evaluation of the study and
review of the dissertation, and Dr. Chiang C. Mei, MIT, for fruitful discussions on the
topic. Messrs. Ebersole and Ernest R. Smith, CHL, and Dr. Jane M. Smith, CHL, are
acknowledged for their assistance with providing data for the study. Dr. Tajima sin-
cerely thanks Penta-Ocean Construction Co., Litd., particularly Dr. Takuzo Shimizu and
Dr. Tsunehiro Sekimoto, for their support.

At the time of publication of this report, Dr. James R. Houston was Director of
ERDC, and COL James R. Rowan, EN, was Commander and Executive Director.



Contents

2.2

2.3

24

2.5

1 Introduction 31
1.1 General Remarks . . . . . . .. ... Lo o 31
1.2 Thesis Outline. . . . . . . .. ... 35

2 Wave Model 37
2.1 Non-Linear Wave Model . . . . . . .. .. ... ... .. ... ... 39

2.1.1 Equivalent Linear Wave . . . . .. ... ... ... ...... 39
2.1.2 Numerical Experiments . . . . . . . ... ... ... ... .. 40
2.1.3 Non-Linear Wave Parameters . . . . . ... .. ... ... .. 43

2.1.4 Reconstruction of the Non-Linear Near-Bottom Wave Orbital

Velocity Profile . . . . . .. .. ... ... 45
Breaking Wave Model . . . . . . ... o o oo 48
221 Model Concept . . . . . .. . o 49
2.2.2  Modeling Fitting Function . . . . . ... ... ... ... ... 49
2.2.3 Experimental Data . . . .. ... . ... .. 0. 51
2.2.4 Complete Breaking Criteria . . . . . . ... ... ... .... 53
Broken Waves . . . . . . . ... 57
2.3.1 Determinationof K, . . .. .. .. . ... ... . ....... 58
2.3.2 Evaluationof ygand 7, . . . . . ... o o 59
Model Application . . . . . . . ... 60
241 H,isKnown . ... .. ... .. ... 00 61
242 H,i1s Unknown . . ... .. .. .. . . . ... .. ... ... 61
Extension of the Model to Random Waves . . . . ... .. ...... 62



2.6 Comparison with Experimental Results . . . . . .. .. ... ... ..
2.6.1 Wave Heights and Wave Set-up . . . . ... .. .. ... ...
2.6.2 Slope-Dependency of the Wave Attenuation . . . ... .. ..
2.6.3 Non-linear Velocity Parameters . . . . . .. .. ... ... ..

2.6.4 Non-Linear Near-Bottom Wave Orbital Velocity Profiles

2.7 Summary and Conclusions . . . . . . . .. .. ... L.

Surface Roller Model
3.1 Model Development . . . . . .. . . ...
3.1.1 Volume Flux and Depth-Averaged Return Flow Velocity
3.1.2 Momentum Flux . . .. ... ... 00 0oL
3.1.3 Energy Balance Equation for Surface Roller . . . . .. .. ..
3.1.4 Determination of K. and Physical Implications . . . . . . ..
3.2 Extension of the Model to Random Waves . . . . . .. ... .....
3.3 Numerical Application of the Model . . . . . . . .. ... ... ....
34 Test of the Model . . . . . . .. .. .. ... ... ... ... ...,

3.5 Summary and Further Implications . . . . . . ... ... ... ....

Nearshore current model

4.1 Introduction . . . . . . . ... Lo

42 Wave Model . . . . . . ..
4.2.1 Volume Flux and Momentum Forcings . . . . ... .. .. ..
4.2.2 Model Extension to Random Waves . . . . . . ... ... ...

4.3 Surface Roller Model . . . . . . .. . ... ... ... ... ......
4.3.1 Volume Fluxes and Momentum Forcings . . . ... .. .. ..

4.4 Near-Shore Mean Current Model . . . . . .. ... ... ... ....
4.4.1 Governing Equation . . . . ... ... 0L
4.4.2 Turbulent Eddy Viscosity Model . . . . . . ... ... ...
4.4.3 Bottom Boundary Condition . . . . . . . .. .. ... ... ..
4.4.4 Solution for Mean Current Profiles . . . . . ... ... .. ..

4.4.5 Integrated Momentum Equations . . . ... ... ... .. ..

8

81
83
84
84
85
87
89
90
90
96



4.5 Model Test . . . . . .

4.5.1
4.5.2

Undertow Velocity Profiles . . . . . .. .. ... ... .....

Longshore Current Profiles . . . . . .. .. ... .. ......

4.6 Effect of Bottom Roughness . . . . . ... .. ... .. ... .....

4.6.1
4.6.2
4.6.3
4.6.4

Fixed Bed (“Known” Roughness Case) . . . . ... ... ...
Comparison with Longuet-Higgins’ (1970) Model . . . . . ..
Movable Bed Bottom Roughness . . . . . ... ... ... ..
Model Application to LSTF Movable Bed Experiments . . . .

4.7 Summary and Conclusions . . . . . . ... ...

5 Sediment Transport Model

5.1 Introduction . . . . . . . . . ..

5.2 Bedload Sediment Transport . . . . . . .. . ... ... ... ... ..

5.2.1
5.2.2

Sediment Transport Roughness and Shear Stress . . . . . . ..

Net Bedload Sediment Transport Rate . . . . .. .. ... ..

5.3 Suspended Sediment Transport . . .. .. .. ... ... ... ....

5.3.1

Further Simplifications . . . . . .. .. .. ... .. ......

5.4 Mean Concentration Distribution . . . . . . . . . . .. .. ... ...

5.4.1
5.4.2
5.4.3
544

Turbulent Eddy Diffusivity. . . . . .. ... ... .. .....
Bottom Boundary Condition . . . . . . . .. ... ... .. ..
Mean Concentration Profiles . . . . . . . .. ... .......

Mean Longshore Suspended Sediment Transport . . . . . . . .

5.5 Grain Size Effect on Suspended Sediment . . . . . . . ... ... ...

5.6 Model Application to LSTF Experiments . . . . . ... ... .....

5.6.1
5.6.2
5.6.3
5.6.4

Sediment Characteristics . . . . . . . . ... ... ... .. ..
Bedload Sediment Transport . . . . . . . .. .. ... ... ..
Suspended Sediment Transport . . . . ... .. ... ... ..
Total Sediment Transport . . . .. .. ... .. .. ......

5.7 Summary and Conclusion . . . .. .. .. .. ... ... ... ...,

6 Summary and Concluding Remarks

9

175
175
176
177
180
180
181
182
182
183
188
188
191
192
193
197
210
228
243

245



A Derivation of Expressions for Trough and Bottom Shear Stress 253

Al Pressure Force . . . . . . . . ... 253
A.2 Some simplifications . . . . . . ... Lo 254
A3 Mean Pressure. . . . . . . ... 256
A4 Trough Shear Stress . . . . . . . . . ... ... 258
A.5 Momentum forces due to surface roller . . . . . ... ... ... ... 259
A.6 Mean vertical momentum flux at trough level . . . . . ... ... .. 260
A.7 Mean Trough Shear Stress . . . . . . . .. .. .. ... ... ..... 261
A.8 Mean Bottom Shear Stress . . . . . . . .. .. ... ... .. 261
A.9 Simplifications for Depth-Integrated Momentum Equations . . . . . . 263

B Model Application for Numerical Computations 265
B.1 Waves and Surface Rollers . . . . . .. .. ... ... ... ...... 265
B.1.1 Effective Bottom Slope . . . . . .. .. ... ... ....... 266

B.2 Nearshore Mean Current . . . . .. .. .. .. ... ... ... .... 268
B.2.1 Boundary Conditions . . . . . . .. .. ... .. ... ... 270

C Predictions of Ripple Geometry 273
C.1 Introduction . . . . . . .. .. .. 273
C.2 Existing Models . . . . . . ... 274
C.3 Model Comparisons . . . . . . . . . . . . oo 279

D Estimation of Skin Friction Shear Stress under Combined Wave and

Current Fields 289

10



List of Figures

2-1
2-2
2-3

2-4

2-5

2-6

2-7
2-8

2-9

2-10

Concept of the equivalent linear wave. . . . . .. ... .. ......
Geometrical conditions for the numerical experiment. . . . . . .. ..
Non-linear characteristics of near-bottom wave orbital velocity and def-
initions of non-linear wave parameters, 1., 1./, Ue,, and Up,. . . . . .
Non-linear wave characteristics parameters, H,/H and Uy, /U, as func-
tions of Ho/ Lo, h/Lo with tan 8y = 1/35; simulations (full line) and
fitting formulae (dotted line). . . . . . .. ... L
Non-linear wave characteristics parameters, T,/ /T, T,/T and w../Up.
as functions of Hy/ Lo, h/ Lo with tan 8y = 1/35; simulations (full line)
and fitting formulae (dotted line). . . . . . .. .. ...
Modeling for reconstructions of the non-linear near-bottom wave or-
bital velocity profile . . . . . . . . .. ...
kH,/tanh khy vs. hy/Lo (experimental data) . . . . . . .. ... ...
Comparisons of the present model and measurements of breaking wave
parameter, kH,/tanhkh, as functions of h,/L¢ and tan y; Present
index (full line), Watanabe et al.’s (1984) index (dotted line) and mea-
surements on various slopes (circles, triangles, and diamonds)

Comparisons of the present model and measurements of relative break-
ing water depth, h,/Hg as functions of Hy/ Lo and tan fp; Present index
(full line), Watanabe et al.’s (1984) index (dotted line) and measure-
ments on various slopes (circles, triangles, and diamonds) . . . . . . .
Relative errors of breaking water depth, h;, between model and data

as functions of Ho/Lg and tanBp. . . . . . . . . .. .. ... ... ..

11

42

o4



2-11 Comparisons of Hy./hy as functions relative breaking water depth,
hy/ Lo, and the bottom slope, fy, predicted by Goda’s (1970) model
and the present model; Present model (full line) and Goda’s (1970)

model (dotted line and circles). . . . ... ... L.
2-12 74 vs. tan 3; experiments (circles) and Eq.(2.25) (full line) . . . . ..

2-13 Comparison of measured and predicted wave heights and wave set-up
(Cox and Kobayashi, 1996); measurements (circles), predicted non-
linear wave heights (full line), and predicted equivalent linear wave

heights (dotted line). . . . . . . ... .. .

2-14 Comparison of measured and predicted significant wave heights and
wave set-up (Okayasu and Katayama, 1992); measurements (circles)

and predictions (full line). . . . ... ... . oL

2-15 Comparison of measured and predicted significant wave heights and
wave set-up (Wang et al., 2002, spilling breaker); measurements (cir-

cles) and predictions (full line). . . . ... .. .. ...

2-16 Comparison of measured and predicted significant wave heights and
wave set-up (Wang et al., 2002, plunging breaker); measurements (cir-

cles) and predictions (full line). . . . ... .. .. ...

2-17 Comparisons of predicted (full line) and measured wave heights on uni-
form slopes. Measurements were reported by Mizuguchi et al. (1978),
Okayasu and Katayama (1992), Cox and Kobayashi (1996), and Stive
and Wind (1986) for tan 5y = dhy/0x =1/10, 1/20, 1/35, and 1/40.

2-18 Measured and predicted non-linear wave characteristics of near-bottom
orbital velocity profiles. (Cox and Kobayashi, 1996); measurements

(circles) and predictions (full line) . . . . . .. ... ... L.

2-19 Comparisons of measured and predicted wave heights, H,, near-bottom
wave orbital velocity height, U,., asymmetry, T./T, and skewness,

Uex /Upx, for periodic waves on plane 1 on 30 sloping beach. Measure-

ments by Hamilton and Ebersole (2001): Test 6A-N . . . . .. .. ..

12

64

69



2-20

2-21

2-22

2-23

2-24

3-1

3-2

Comparisons of measured and predicted wave heights, H,, near-bottom
wave orbital velocity height, U,., asymmetry, T./T, and skewness,
Uex /Uy, for random waves on plane 1 on 30 sloping beach. Measure-

ments by Hamilton and Ebersole (2001): Test SA-E . . . . .. .. ..

Comparisons of measured and predicted wave heights, H,, near-bottom
wave orbital velocity height, Up., asymmetry, T./T, and skewness,

Uex /Ups, for random waves on movable bed beach. Measurements by

Wang et al. (2002): Test 1, spilling breaker. . . . . .. .. ... ...

Comparisons of measured and predicted wave heights, H,, near-bottom
wave orbital velocity height, U,., asymmetry, T./T, and skewness,
Uex /Ups, for random waves on movable bed beach. Measurements by

Wang et al. (2002): Test 3, plunging breaker. . . . .. .. ... ...

Comparisons of measured (dashed lines) and predicted (full lines) near-
bottom wave orbital velocity profiles for periodic waves on plane 1 on
35 sloping beach. Measurements by Cox and Koabayshi (1996) (at
stations 1,2, and 3). . . . ... oo oo

Comparisons of measured (dashed lines) and predicted (full lines) near-
bottom wave orbital velocity profiles for periodic waves on plane 1 on
35 sloping beach. Measurements by Cox and Koabayshi (1996) (at
stations 4, 5, and 6). . . . ... oo oL

Sketch of the surface roller . . . . . . . . . . . ... ... ...

Comparisons of measured and predicted non-dimensional volume flux
with periodic waves incident on uniform slopes. Resources of the exper-
imental data were the same referred in Figure 2-17, i.e. by Mizuguchi
et al. (1978), Okayasu and Katayama (1992), Cox and Kobayashi
(1996), and Stive and Wind (1986) for tan 5y = dho/0x =1/10, 1/20,
1/35, and 1/40; Present Model (full line) and Dally and Brown’s Model
(dashed line). . . . . . . . ...

74

75

76

78

79

83



3-3

3-4

3-5

3-6

3-7

4-1

4-2

4-3

Comparisons of measured and predicted wave heights, wave set-up, and
depth-averaged undertow velocity for periodic waves on plane 1 on 35
sloping beach. Measurements by Cox and Kobayashi (1996) (circles);
Predictions with surface roller (full line) and without (dashed line). . 92

Comparisons of measured and predicted wave heights, H,, wave set-
up, 7, and depth-averaged return flow velocity, —U, for periodic waves
obliquely incident on plane 1 on 30 sloping beach. Measurements(Test
6A-N) Hamilton and Ebersole (2001) (circles); Predictions with surface
roller (full line) and without (dashed line). . . . .. . ... ... ... 93

Comparisons of measured and predicted wave heights, wave set-up,
and depth-averaged undertow velocity for random waves on plane 1
on 20 sloping beach. Measurements by Okayasu and Katayama (1992)

(circles); Predictions with surface roller (full line) and without (dashed

Comparisons of measured and predicted wave heights, H,.,s, wave set-
up, 7, and depth-averaged return flow velocity, —U, for random waves
obliquely incident on plane 1 on 30 sloping beach. Measurements(Test
8A-E) Hamilton and Ebersole (2001) (circles); Predictions with surface
roller (full line) and without (dashed line). . . . .. . ... ... ... 95

Comparisons of measured and predicted wave heights, wave set-up, and
depth-averaged undertow velocity for random waves on barred beach

profile. Measurements by Okayasu and Katayama (1992) (circles); Pre-

dictions with surface roller (full line) and without (dashed line). . . . 97
Tllustration of the near-shore mean current model . . . . . . . . . .. 110
Turbulent Eddy Viscosity Model . . . . . . . . ... ... ... ... 113

Modified wave-current bottom boundary layer model proposed by Mad-
sen (1994) . . . . 116



4-4

4-6

4-8

4-9

Comparison of measured and predicted wave heights, H,, wave set-up,
7, and vertical profiles of undertow velocity for periodic waves on plane
1 on 35 sloping beach with bottom roughness ky = lmm. Measure-
ments by Cox and Kobayashi (1996) (full circles indicate measurements
below and open circles above trough level) and predictions (full line).
Dotted line in set-up is the prediction neglecting the bottom shear

stress and mean momentum forces. . . . . . . . .. .. ... ...

Comparisons of the cross-shore forcing terms in (4.49) for Cox and
Kobayashi’s (1996) experiment: (a) external forcings and hydrostatic

pressure forces; (b) mean-current-associated forces; (c) total forces.

Comparisons of the cross-shore forcing terms in (4.33) for Cox and
Kobayashi’s (1996) experiment: (a) external forcings and hydrostatic

pressure forces; (b) mean-current-associated forces; (c) total forces.

Comparison of measured and predicted wave heights, H,,,,, wave set-
up, 7, and vertical profiles of undertow velocity for random waves
on plane 1 on 20 sloping beach with smooth concrete bed. Measure-
ments(Case 2) by Okayasu and Katayama (1992) (full circles indicate
measurements below and open circles above trough level) and predic-
tions (full line). Dotted line in set-up is the prediction neglecting the

bottom shear stress and mean momentum forces. . . . . . . ... ..

Comparisons of the cross-shore forcing terms in (4.49) for Okayasu and
Katayama’s (1992) experiment (Case 2): (a) external forcings and hy-
drostatic pressure forces; (b) mean-current-associated forces; (c) total

forces. . . . .,

Comparisons of the cross-shore forcing terms in (4.33) for Okayasu and
Katayama’s (1992) experiment: (a) external forcings and hydrostatic

pressure forces; (b) mean-current-associated forces; (c) total forces.

15

121

124

125

130



4-10

4-11

4-12

4-13

4-14

4-15

Comparison of measured and predicted wave heights, H.,,s, wave set-
up, 7, and vertical profiles of undertow velocity for random waves on
barred beach with smooth concrete bed. Measurements(Case 3) by
Okayasu and Katayama (1992) (full circles indicate measurements be-
low and open circles above trough level) and predictions (full line).
Dotted line in set-up is the prediction neglecting the bottom shear
stress and mean momentum forces. . . . . . ... ... .. ... ...
Comparisons of measured and predicted wave heights, H,, wave set-
up, 7, vertical profiles of undertow and longshore current velocity, and
depth-averaged longshore current velocity, V, for periodic waves on
plane 1 on 30 sloping beach. Measurements (Test 6A-N) by Hamilton
and Ebersole (2001) (full circles) and predictions (full line). . . . . . .
Comparisons of the longshore forcing terms in (4.50) for LSTF ex-
periment (Test 6A-N): (a) external forcings and hydrostatic pressure
forces; (b) mean-current-associated forces; (c) total forces. . . . . ..
Comparisons of the longshore forcing terms in (4.41) for LSTF ex-
periment (Test 6A-N): (a) external forcings and hydrostatic pressure
forces; (b) mean-current-associated forces; (c) total forces. . . . . ..
Comparisons of the depth-averaged longshore current velocity for LSTF
experiment (Test 6A-N): measurements (full circles) and predictions by
the present model when following terms are accounted: (1) only wave
forces; (2) (1) plus the turbulent lateral mixing; (3) (1) plus surface
roller forces; (4) (3) plus the turbulent lateral mixing; (5) all terms
except mean-current associated forcing terms above the trough; and
(6) all terms. . . . . ...
Comparisons of measured and predicted wave heights, H,.,s, wave set-
up, 7, vertical profiles of undertow and longshore current velocity, and
depth-averaged longshore current velocity, V, for random waves on
plane 1 on 30 sloping beach. Measurements (Test 8A-E) by Hamilton
and Ebersole (2001) (full circles) and predictions (full line). . . . . . .

16

131

133

135

138

141



4-16

4-17

4-18

4-19

4-20

Comparisons of the longshore forcing terms in (4.50) for LSTF experi-
ment (Test 8A-E): (a) external forcings and hydrostatic pressure forces;

(b) mean-current-associated forces; (c) total forces. . . .. .. .. ..

Comparisons of the longshore forcing terms in (4.41) for LSTF experi-
ment (Test 8A-E): (a) external forcings and hydrostatic pressure forces;

(b) mean-current-associated forces; (c) total forces. . . .. .. .. ..

Comparisons of the depth-averaged longshore current velocity for LSTF
experiment (Test 8A-E): measurements (full circles) and predictions by
the present model when following terms are accounted: (1) only wave
forces; (2) (1) plus the turbulent lateral mixing; (3) (1) plus surface
roller forces; (4) (3) plus the turbulent lateral mixing; (5) all terms
except mean-current associated forcing terms above the trough; and

(6) all terms. . . . . ...

Comparisons of measured and predicted depth-averaged longshore cur-
rent velocity, V, for periodic waves on plane 1 on 20 sloping beach with
different bottom roughness. Measurements (Cases 4 and 7 above and
Cases 5 and 8 below) by Visser (1991) (Concrete bed (Cases 4 and
5) by open circles and gravel bed (Case 7 and 8) by full circles) and
predictions (Concrete bed (Cases 4 and 5) by dashed line and gravel
bed (Case 7 and 8) by full line). . . . . . ... ... .. ... .. ...

Comparison of predicted undertow velocity profiles with different bot-
tom roughness for periodic waves on plane 1 on 20 sloping beach (Cor-
responding to experimental Case 4 and 7 by Visser, 1991). ky=0.1lmm
(dashed line) and ky=6mm (full line). . . .. .. ... .. .. ...,

17

144

145

146

149



4-21

4-22

4-23

4-24

Comparisons of measured and predicted depth-averaged longshore cur-
rent velocity, V, for periodic waves on plane 1 on 20 sloping beach with
different bottom roughness. Measurements (Cases 4 and 7 above and
Cases 5 and 8 below) by Visser (1991) (Concrete bed (Cases 4 and
5) by open circles and gravel bed (Case 7 and 8) by full circles) and
predictions (Concrete bed (Cases 4 and 5) by dashed line and gravel
bed (Case 7 and 8) by full line). Heavy lines are the predictions by the
present model with ky = bmm (full) and ky = 0.lmm (dashed) and
thin lines are the predictions by the best-fit LH model. . . . . . . ..

/

f—— Measure-

Relative equivalent bottom roughness, ky/D vs.
ments (full rectangles) presented by Madsen et al. (1993) and models
by Herrmann (2004) (full circles); Wilson (1989) (open circles); Xu and
Wright (1995) (triangles); and Coastal Engineering Manual (2002) (di-

amONdS). . . ..

Cross-shore distributions of (a) depth-averaged longshore current ve-
locity, (b) ripple heights, (¢) equivalent bottom roughness, and (d) wa-
ter depth; Experiments (full circles) presented by Wang et al. (2002)
(Test 1) and predictions with roughness represented by Herrmann’s
(2004) (full line); Madsen(2001) (thin dashed line); and ky = 7, (heavy
dashed line). . . . . . . . ..

Cross-shore distributions of (a) depth-averaged longshore current ve-
locity, (b) ripple heights, (¢) equivalent bottom roughness, and (d) wa-
ter depth; Experiments (full circles) presented by Wang et al. (2002)
(Test 3) and predictions with roughness represented by Herrmann’s
(2004) (full line); Madsen(2001) (thin dashed line); and ky = 7, (heavy
dashed line). . . . . . . . ..

154

161

165



4-25

4-26

5-1

5-2

5-3

5-4

5-5

Comparisons of measured and predicted wave heights, H,.,s, wave set-
up, 7, vertical profiles of undertow and longshore current velocity, and
depth-averaged longshore current velocity, V, for random waves barred
beach with movable sand bed. Measurements (Test 1: spilling breaker)
by Wang et al. (2002) (full circles) and predictions (full line).

Comparisons of measured and predicted wave heights, H,.,s, wave set-
up, 7, vertical profiles of undertow and longshore current velocity,
and depth-averaged longshore current velocity, V, for random waves

barred beach with movable sand bed. Measurements (Test 3: plunging

breaker) by Wang et al. (2002) (full circles) and predictions (full line).

Cross-shore locations of measured longshore current velocity profiles;

LSTF experiments by Wang et al. (2002) (Test 1) . . . . . .. .. ..

Cross-shore locations of measured longshore current velocity profiles;

LSTF experiments by Wang et al. (2002) (Test 3) . . . . . .. .. ..

Cumulative distributions of sampled sand used in LSTF experiment

(Wang et al., 2002) . . . . ... .. ... o

Weight fractions of each diameter class. Open circles are the dominant

six classes applied to represent the sediment characteristics. . . . . .

Time-varying profiles of (a) linear sinusoidal near-bottom wave orbital
velocity and corresponding profiles of (b) sediment transport shear
stress, (¢) cross-shore (z) and (d) longshore (y) bedload sediment trans-
port rates at Station 4 in Test 1 of LSTF experiments. Full and dashed
lines in (¢) and (d) are when the bottom slope effect is accounted for

and neglected, respectively. (case (A), Tys (1) ~ Uy cos (Wt — 7)) . . .

19

169

170

194

194

196

196

199



5-6

5-7

5-8

5-9

5-10

Time-varying profiles of (a) linear sinusoidal near-bottom wave orbital
velocity and corresponding profiles of (b) sediment transport shear
stress, (¢) cross-shore (z) and (d) longshore (y) bedload sediment trans-
port rates at Station 4 in Test 3 of LSTF experiments. Full and dashed
lines in (¢) and (d) are when the bottom slope effect is accounted for
and neglected, respectively. (case (A), Tys (1) ~ Upy cos (Wt — 7)) . . .
Time-varying profiles of (a) non-linear near-bottom wave orbital veloc-
ity and corresponding profiles of (b) sediment transport shear stress,
(¢) cross-shore (x) and (d) longshore (y) bedload sediment transport
rates at Station 4 in Test 1 of LSTF experiments. Full and dashed
lines in (¢) and (d) are when the bottom slope effect is accounted for
and neglected, respectively. (case (B), Tys (£) ~ wpw (1)) - . o o o . ..
Time-varying profiles of (a) non-linear near-bottom wave orbital veloc-
ity and corresponding profiles of (b) sediment transport shear stress,
(¢) cross-shore (x) and (d) longshore (y) bedload sediment transport
rates at Station 4 in Test 3 of LSTF experiments. Full and dashed
lines in (¢) and (d) are when the bottom slope effect is accounted for
and neglected, respectively. (case (B), Tys (£) ~ wpw (1)) - . o o o . ..
Time-varying profiles of (a) non-linear near-bottom wave orbital veloc-
ity and corresponding profiles of (b) sediment transport shear stress,
(¢) cross-shore (x) and (d) longshore (y) bedload sediment transport
rates at Station 4 in Test 1 of LSTF experiments. Full and dashed
lines in (¢) and (d) are when the bottom slope effect is accounted for
and neglected, respectively. (case (C), Tys (£) ~ |tpw (£)] tpw (1)) -+ . .
Time-varying profiles of (a) non-linear near-bottom wave orbital veloc-
ity and corresponding profiles of (b) sediment transport shear stress,
(¢) cross-shore (x) and (d) longshore (y) bedload sediment transport
rates at Station 4 in Test 3 of LSTF experiments. Full and dashed
lines in (¢) and (d) are when the bottom slope effect is accounted for

and neglected, respectively. (case (C), Tys (t) ~ |tpw (£)] tpw (1)) . . . .

20

200

203

204

205

206



5-11

5-12

5-13

5-14

Cross-shore distributions of the net bedload sediment transport rates
in the cross-shore (z) and the shore-parallel (y) directions (Test 1).
Predictions are based on: (A) 7y (1) ~ Uy, cos (wi) (thin dashed line);
(B) Tus (t) ~ tpy () (thin full line); (C) Tys (t) ~ |upy (t)| upw (t) (heavy
full line); and (D) same as (C) without bottom slope effects (heavy
dashed line). Full circles are the longshore bedload sediment transport
rates obtained from the measurements and open circles denote the
cross-shore locations where measured suspended sediment transport

rates exceed the measured total LSST. . . . . . . . .. .. ... ...

Cross-shore distributions of the net bedload sediment transport rates
in the cross-shore (z) and the shore-parallel (y) directions (Test 3).
Predictions are based on: (A) Tys (1) ~ Upm cos (wt) (thin dashed line);
(B) Tus () ~ tyy (t) (thin full line); (C) Ty (t) ~ |upy (t)| upy (t) (heavy
full line); and (D) same as (C) without bottom slope effects (heavy
dashed line). Full circles are the longshore bedload sediment transport
rates obtained from the measurements and open circles denote the
cross-shore locations where measured suspended sediment transport

rates exceed the measured total LSST. . . . . . . . .. .. ... ...

Time-varying profiles of linear sinusoidal near-bottom wave orbital ve-
locity and corresponding profiles of sediment transport shear stress
and reference concentrations at Station 4 in Test 1. Full and dashed
lines in the reference concentration are when the bottom slope effect is

accounted for and neglected, respectively. . . . .. .. .. ... ...

Time-varying profiles of linear sinusoidal near-bottom wave orbital ve-
locity and corresponding profiles of sediment transport shear stress
and reference concentrations at Station 4 in Test 3. Full and dashed
lines in the reference concentration are when the bottom slope effect is

accounted for and neglected, respectively. . . . .. .. .. ... ...

21

208

209

211



5-15

5-16

5-17

5-18

5-19

Time-varying profiles of non-linear near-bottom wave orbital velocity
and corresponding profiles of sediment transport shear stress and ref-
erence concentrations at Station 4 in Test 1. Profiles are (B) (heavy
dashed line), (C) (heavy full line), and (C) without bottom slope ef-
fects (thin dashed line). Straight dashed and full lines in the reference
concentrations are the mean reference concentrations for (B) and (C),
respectively. . . . . . . L
Time-varying profiles of non-linear near-bottom wave orbital velocity
and corresponding profiles of sediment transport shear stress and ref-
erence concentrations at Station 4 in Test 3. Profiles are (B) (heavy
dashed line), (C) (heavy full line), and (C) without bottom slope ef-
fects (thin dashed line). Straight dashed and full lines in the reference
concentrations are the mean reference concentrations for (B) and (C),
respectively. . . . . . L L
Cross-shore distributions of the mean reference concentration (Test
1). Predictions are based on: (A) Ty (1) ~ Upy, cos (wit) (thin dashed
line); (B) non-linear profile with 7, (£) ~ wuy, (¢) (thin full line); (C)
Tws (1) ~ |tpy ()| tpy (t) (heavy full line); and (D) same as (C) without
bottom slope effects (heavy dashed line). . . ... . ... ... ...
Cross-shore distributions of the mean reference concentration (Test
3). Predictions are based on: (A) Tys (£) ~ Upm cos (wt) (thin dashed
line); (B) non-linear profile with 7, (£) ~ wuy (¢) (thin full line); (C)
Tws (1) ~ |tpy ()| tpy (t) (heavy full line); and (D) same as (C) without
bottom slope effects (heavy dashed line). . . ... . ... ... ...
Comparisons of the predicted and measured mean suspended sediment
concentrations. Measurements (circles) are obtained by Wang et al.,
(2002) (Test 1) and predictions (six full lines in each figure) are when
D4 to Dg were applied respectively. The highest concentrations in each
figure is when the finest diameter, D = Dy, is applied and the predicted

concentration lowers as D changes from Dy to Dg. . . . . . . . .. ..

22

214

215

216

217



5-20

5-21

5-22

5-23

5-24

Comparisons of the predicted and measured mean suspended sediment
concentrations. Measurements (circles) are obtained by Wang et al.,
(2002) (Test 1) and predictions are when following diameters were ap-
plied: Dyso(thin dashed line); Ds, Dg, and D7 (thin full line); Dy to

Dy (heavy dashed line); and all diameter classes (heavy full line).

Comparisons of the predicted and measured mean suspended sediment
concentrations. Measurements (circles) are obtained by Wang et al.,
(2002) (Test 3) and predictions are when following diameters were ap-
plied: Dyso(thin dashed line); Ds, Dg, and D7 (thin full line); Dy to

Dy (heavy dashed line); and all diameter classes (heavy full line).

Cross-shore distributions of the net cross-shore, gss,, and longshore,
Jss.y, suspended sediment tranport rates for LSTF experiments (Test
1). Measurements (circles) and predictions are when following sedi-
ment size-classes are accounted for: (i) Dyso (thin dashed line); (ii)
Ds, Dg, and D7 (thin full line); (iii) D4 through Dy (havy dashed line);

and (iv) all diameter classes (heavy full line). . . . . . . .. ... ...

Cross-shore distributions of the net cross-shore, gss,, and longshore,
Jss,y, suspended sediment tranport rates for LSTF experiments (Test
3). Measurements (circles) and predictions are when following sedi-
ment size-classes are accounted for: (i) Dyso (thin dashed line); (ii)
Ds, Dg, and D7 (thin full line); (iii) D4 through Dy (havy dashed line);

and (iv) all diameter classes (heavy full line). . . . . . . .. ... ...

Cross-shore distributions of the measured cross-shore suspended sedi-
ment transport rates (open circles) and the predicted bedload (thin full
line), suspended load (dashed line), and the total sediment transport

rate (heavy full line) in the cross-shore direction for Test 1. (prediction

case (B) Tys (£) ~up (8)) - o o o o oo o

220

222

225

226



5-25

5-26

5-27

5-28

5-29

5-30

B-1

Cross-shore distributions of the measured cross-shore suspended sedi-
ment transport rates (open circles) and the predicted bedload (thin full
line), suspended load (dashed line), and the total sediment transport

rate (heavy full line) in the cross-shore direction for Test 3. (prediction
case (B), Tuws (£) ~upw (1)) - - o o o o oo

Cross-shore distributions of the measured cross-shore suspended sedi-
ment transport rates (open circles) and the predicted bedload (thin full
line), suspended load (dashed line), and the total sediment transport

rate (heavy full line) in the cross-shore direction for Test 1. (prediction
case (C), Tys (1) ~ |upw (&) upw (£)) o o o o v

Cross-shore distributions of the measured cross-shore suspended sedi-
ment transport rates (open circles) and the predicted bedload (thin full
line), suspended load (dashed line), and the total sediment transport
rate (heavy full line) in the cross-shore direction for Test 3. (prediction
case (C), Tys (1) ~ |upw (&) upw (£)) o o o o v
Cross-shore distributions of the predicted bedload (thin full line), sus-
pended load (dashed line), and the total sediment transport rate (heavy
full line) in the shore-parallel for Test 1. Measurements (circles, sus-
pended load; and triangles, total LSST) are obtained by Wang et al.
(2002). . .o
Cross-shore distributions of the predicted bedload (thin full line), sus-
pended load (dashed line), and the total sediment transport rate (heavy
full line) in the shore-parallel for Test 3. Measurements (circles, sus-
pended load; and triangles, total LSST) are obtained by Wang et al.
(2002).  + oo
Comparisons of longshore bedload and suspended load transport rates
between Test 1 (spilling breakers, full line) and Test 3 (plunging break-

ers, dashed line). . . . .. ... ...

Concept of the effective bottom slope . . . . . . .. .. .. ... ...

24

232

233

234

237

238



C-1

C-2

C-3

C-4

C-5

Cross-shore distributions of measured ripple height, 7, steepness, 1, /A,
and water depth. Measurements (Test 1: spilling breakers) by Wang
et al. (2002) (full circles) and local average (dashed lines). . . . . ..

Cross-shore distributions of measured ripple height, 7, steepness, 1, /A,
and water depth. Measurements (Test 3; plunging breakers) by Wang
et al. (2002) (full circles) and local average (dashed lines). . . . . ..

Comparisons of predicted and measured ripple height, 7,, and steep-
ness, 1), /A, as a function of non-dimensional parameter, Z = vy, ... /S«
for the experimental case by Wang et al. (2002) (Test 1; spilling break-
ers). Measurements outside the surf zone (X (m) < —14, triangles),
inside the surf zone (—14 < X (m) < —5, full circles), and near the
shoreline (X (m) > —b5, open circles). Models are WMI1F (Wikra-
manayake and Madsen, 1991, field), WM91L (Wikramanayake and

Madsen, 1991, laboratory), SG02 (Styles and Glenn, 2002), L96 (Li et

al., 1996), N81 (Nielsen, 1981), and WH94 (Wiberg and Harris, 1994).

Comparisons of predicted and measured ripple height, 7., and steep-
ness, 7./, as a function of non-dimensional parameter, 7 =1y, /S,
for the experimental case by Wang et al. (2002) (Test 3; plunging
breakers). Measurements outside the surf zone (X (m) < —14, tri-
angles), inside the surf zone (—14 < X (m) < —5, full circles), and
near the shoreline (X (m) > —5, open circles). Models are WMI1F
(Wikramanayake and Madsen, 1991, field), WM91L (Wikramanayake
and Madsen, 1991, laboratory), SG02 (Styles and Glenn, 2002), L96
(Li et al., 1996), N81 (Nielsen, 1981), and WH94 (Wiberg and Harris,

1994). . ..

Cross-shore distributions of measured and predicted ripple height, 7.,
steepness, 7,/A, and water depth. Measurements (Test 1: spilling
breakers) by Wang et al. (2002) (full circles) and predictions by Wikra-
manayake and Madsen (1991) (dashed line based on ; full line

w,rms?

based on ¥],). . . . ...

284



C-6 Cross-shore distributions of measured and predicted ripple height, 7,,
steepness, 7,/A, and water depth. Measurements (Test 3: plunging
breakers) by Wang et al. (2002) (full circles) and predictions by Wikra-
manayake and Madsen (1991) (dashed line based on ; full line

w,rms?

based on ¥],). . . . ...

26



List of Tables

1.1

2.1
2.2
2.3

4.1

4.2

4.3

4.4
4.5

Experimental cases in LSTF applied to test the present model (Hamil-
ton and Ebersole, 2001; Wang et al., 2002). . . . . . . ... ... ...

Summary of the numerical experiments . . . . . . ... . ... ....
Summary of experimental data (N is the number of data available)
Means and standard diviations of relative errors between predicted and

measured breaking water depth. . . . . .. ... ... 0oL

Root-mean-square errors (m/s) between predicted and measured depth-
avaraged longshore current velocity (C6-N). . . ... ... ... ...
Root-mean-square errors (m/s) between predicted and measured depth-
avaraged longshore current velocity (C8-E). . . ... ... ... ...
Root-mean-square errors of the present model and the best-fit LH
model, and best-fit empirical coefficients for the LH model for experi-
ments (Cases 4, 7, 5, and 8) presented by Visser (1991) and LSTF ex-
periments (Tests 6A-N and 8A-E) reported by Hamilton and Ebersole
(2001). Predictions for the present model are based on kxy = 0.1lmm
(Cases 4 and 5) and ky = bmm (Cases 7 and 8). For the random wave
case (Test 8A-E), breaking characteristics of the equivalent periodic
wave, applied to the LH model, are determined from: (A) rms; and

(B) significant incident wave heights, respectively. . . . . . .. .. ..

34

41
52

o4

141

144

162

Apparent roughness, ky,, obtained from field data (Madsen, et al., 1993)162

Equivalent roughness, ky /D, obtained from field data (Madsen et al.,



4.6

4.7

5.1
5.2

5.3

5.4

5.5

5.6

5.7

Mean errors of predicted and standard deviations of measured long-

shore current velocity (Test 1: spilling breaker). Predictions are (1)

Herrmann (2004), (2) Madsen (2001), and (3)kxy =n, . . . . . . . ..

Mean errors of predicted and standard deviations of measured long-

shore current velocity (Test 3: plunging breaker). Predictions are (1)

Herrmann (2004), (2) Madsen (2001), and (3)kxy =n, . . . . . . . ..

Characteristics of bottom sediments in each grain size class . . . . . .

Predicted hydrodynamic characteristics at Station 4 for Test 1 and

Comparisons of measured and predicted suspended lord transport rates
in the cross-shore and longshore directions at seven Stations and their
relative errors (Test 1, spilling breakers). Predictions (A) and (B)
are only for case (iv) and the values at Station 3 (X = —13.1m) are

excluded for the average values. . . . . ... ... ... ........

Comparisons of measured and predicted suspended lord transport rates
in the cross-shore and longshore directions at seven Stations and their
relative errors (Test 3, plunging breakers). Predictions (A) and (B)
are only for case (iv) and the values at Station 3 (X = —13.1m) are

excluded for the average values. . . . . ... ... ... ........
Measured and predicted local LSST and the total LSST integrated

over the cross-shore (x) axis and their relative errors (Test 1, spilling
breakers). Predictions are based on (A) Ty (t) ~ coswt, (B) 7ys (1) ~
Upy (1), and (C) Tys (8) ~ |tpw (&) Upw (£). - o o o o o o oo
Measured and predicted local LSST and the total LSST integrated

over the cross-shore (z) axis and their relative errors (Test 3, plunging

breaker). Predictions are based on (A) 7y (t) ~ coswt, (B) Tys (1) ~
Upy (1), and (C) Tys (8) ~ |tpw (&) Upw (£). - o o o o o o oo

Number of data points (out of 18 measured locations) whose relative

errors fall within specified error ranges for the prediction case (C). . .

28

240



5.8 Measured and predicted bed load, suspended load and total LSST in-
tegrated over the entire cross-shore region, Qsp,, @ssy, and Qg, =
Qspy + Qssy, respectively. Units of the measured and predicted LSST

arein (m®/year). . . . .. ...

29



Chapter 1

Introduction

1.1 General Remarks

The estimation of beach erosion, which is caused by local imbalance of the sediment
transport, is one of the most significant concerns to coastal engineers. Sediment
transport is generally expressed as a vector of two horizontal components in the
cross-shore and longshore directions. Since the large magnitude of either component
of sediment transport is caused around the surf zone, it is essential to develop a
predictive model for sediment transport inside the surf zone.

Longshore sediment transport (LSST) is mainly caused by the longshore current,
which is induced by the longshore forcing due to breaking waves. Since LSST has
a significant influence on beach erosion for a longer time-scale and wider area, in-
tensive efforts have been made to obtain reasonably accurate predictions. In the
United States, the “CERC formula” is generally used to predict the total LSST
(Shore Protection Manual, 1977, 1984). The CERC formula, which is based on Sav-
age (1962), empirically determines the total LSST as a function of the breaking wave
characteristics. Although the formula is simple and easy to use, it has consider-
able uncertainty regarding applications to various conditions such as sediment grain
size, different bottom slopes as well as bar-type topography, and breaker types, i.e.,
plunging or spilling. For instance, Madsen et al. (2003) pointed out, from their order-
of-magnitude analysis, that the CERC-type formula does not appropriately account
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for the contribution of suspended sediment transport and therefore applicability of the
formula is questionable when the suspended sediment transport dominates the total
sediment transports, such as during severe storm. Although the cross-shore distribu-
tions of LSST have been proposed (e.g., Bodge and Dean, 1987), their predictions do
not agree well with field measurements especially for the location of the peak LSST
(Coastal Engineering Manual, 2001). Based on these total LSST models, numerous
coastline evolution models, such as GENESIS (Hanson and Kraus, 1989 and Gravens
et al., 1991), N-line models (Perlin and Dean, 1983; Scheffner and Rosati, 1987; and
Kobayashi and Han, 1988), have been proposed. Since the concept of these models is
based on empirically determined LSST model such as the CERC formula, they have

the same problems of uncertainty when applied for various conditions.

Cross-shore sediment transport (CSST) is mainly caused by wave orbital velocity
and undertow. CSST can be either shoreward or seaward depending on the wave
and undertow intensity. For example, storm waves tend to yield seaward sediment
transport while milder waves cause shoreward sediment transport. Because of this
feature, CSST generally causes relatively rapid topographical changes compared to
LSST and, in the long run, the cross-shore ward sediment transport is considered
to be balanced. This is one reasons why only LSST is considered in most models
for predictions of long term beach evolutions, with less effort and attention being
devoted to the evaluation of CSST (e.g., GENESIS and N-line models). When wave
characteristics are uniform along the shoreline, however, CSST becomes more impor-
tant. Moreover, in order to determine LSST for a barred beach, CSST is essential to

estimate the proper cross-shore beach profile.

For the estimation of local sediment transport, the energetics-based approach has
often been applied. As an example of this approach, the Bailard (1981) model, which
is an improved version of Bagnold (1963) model, is well known. Assuming that a
portion of fluid energy is expended in maintaining a sediment transport, the model
determines sediment transport as a function of local wave, bottom and sediment char-
acteristics. The model accounts for both bedload and suspended sediment transport

and the percent of the contributions of each sediment transport mode is determined
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empirically. Although the model is relatively simple and easy to use, the model has
the following weaknesses: (i) since the model was originally established for uniform
steady flow, there is no justification for its direct application to oscillatory flow condi-
tions; (ii) empirical coeflicients are hard to quantify and have been shown to fluctuate
with varying hydrodynamic conditions (Nairn and Southgate, 1993); (iii) the model
has no threshold for sediment motion, i.e., the model can be used only for large wave
conditions. In addition to these weaknesses, Gallagher et al. (1998) pointed out that
the energetics model cannot predict the slow shoreward migration observed during

milder waves when observed local current conditions are utilized to evaluate local

CSST.

The eventual goal of this research is therefore to develop a predictive model for
the local sediment transport rate on a long, straight beach. In order to refine the
model applicability, a process-based approach should be taken. We thus apply the
conceptual bedload sediment transport model and associated suspended sediment
transport model (Madsen, 2001), both of which were originally developed for non-
breaking wave conditions. Since these models are based on considerations of physical
processes, it is expected that these models can be extended to application inside the

surf zone once the appropriate hydrodynamics are obtained.

In this sense, an ability to accurately predict the surf zone hydrodynamics is vi-
tal to develop a process-based sediment transport model. For example, time-varying
near-bottom velocity determines the bottom shear stress, which induces bedload sedi-
ment transport. Skewness and asymmetry of the near-bottom non-linear wave orbital
velocity, which are dominant features for near-breaking and broken waves, may play
significant roles in yielding net bedload sediment transport in the shoreward direction.
The bottom shear stress also acts to entrain bottom sediments into the water column
where the turbulence due to wave breaking keeps a potentially large amount of sed-
iments suspended and available for transport by the near-shore mean current in the

seaward and longshore directions by the undertow and longshore current, respectively.

In this research, we first develop a model for predictions of the surf zone hy-

drodynamics. The model consists of predictions of breaking wave characteristics,
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Table 1.1: Experimental cases in LSTF applied to test the present model (Hamilton
and Ebersole, 2001; Wang et al., 2002).

Case | Test 6A-N | Test 8A-E u Test 1 ‘ Test 3
Wave periodic random

Bed concrete plane movable sand
T (s) 2.5 2.5 1.5 3.0
Ho/ Lo 0.019 0.017 | 0.054 | 0.012

near-bottom wave orbital velocities, and wave-induced currents, i.e., undertow and
longshore current. In order to explain the excess volume flux and the momentum
forcings observed in the surf zone, a surface roller evolution model is also developed.
Finally, the predicted near-shore hydrodynamics are applied to the conceptual sed-
iment transport model (Madsen, 2001) to evaluate the characteristics of the local
sediment transports.

The predictive skills of the present model is examined through comparison with
unique experimental data sets obtained by the U.S. Army Corps of Engineers in their
large-scale Longshore Sediment Transport Facility (LSTF) (Hamilton and Ebersole,
2001, Wang et al., 2002). In the LSTF, uniform longshore currents on a long, straight
beach are achieved by installing multiple pumps at one end of the beach. Using this
facility, they have measured wave characteristics, horizontal current velocities and
sediment concentrations at various points at multiple elevations for regular and ran-
dom waves obliquely incident on parallel contour beaches of both concrete and fine
sand. Table 1.1 summarizes the experimental conditions used to compare with the
present model. A complete description of the facility can be found in Hamilton, et
al. (2001): http://libweb.wes.army.mil/uhtbin /hyperion/CHL-TR-01-22.pdf. From
the measurements, we have access to time-series of surface profiles and near-bottom
wave orbital velocities as well as profiles of time-averaged longshore currents, un-
dertow velocity profiles and suspended sediment concentrations. Equilibrium beach
profiles and total LSST are also available for the movable bed cases. Therefore, their
experiments are suited for the model examinations because we can confirm the con-

sistency of our model for each of various physical mechanisms, which contribute to
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the sediment transport processes.

1.2 Thesis Outline

In Chapter 2, we introduce the wave models (Tajima and Madsen, 2002). For prac-
tical reasons, all models are constructed based on linear wave theory. We explore
the relationship between non-linear and an equivalent linear wave through numerical
experiments and develop a model for reconstruction of non-linear wave characteris-
tics such as skewness and asymmetry of near-bottom orbital velocity from knowledge
of the equivalent linear wave characteristics. Shoaling, breaking, and broken wave
characteristics are then determined based on equivalent linear wave concept from a
simple energy balance equation. A simple model extension to random waves is also
discussed. The applicability of these models is examined through comparison of their
predictions with measured experimental data, which have not been used to calibrate
the model coefficient.

In Chapter 3, the surface roller model (Tajima and Madsen, 2003) is developed.
Since the wave model is based on the energy balance equation with linear wave theory,
evolution of the surface roller is also determined from an energy balance equation.
The local surface roller energy, obtained in this manner, characterizes the volume flux
and momentum forcings, which are applied to the near-shore mean current model.
The applicability of the model is also tested through comparison with measured ex-
perimental data.

Chapter 4 discusses the development of a near-shore mean shear current model
based on the present wave and surface roller models. The near-shore current model
consists of two-layer two-dimensional-horizontal (2DH) momentum equations, inte-
grated above the wave trough level and over the entire depth, which determine mean
shear stresses at the trough level and over the entire depth, respectively. Coupled with
a simple turbulent eddy viscosity model, analytical solutions are obtained for the ver-
tical mean shear current profiles. The model account for the convective acceleration

forces due to current-current, wave-current, and surface roller-current interactions.
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The bottom boundary condition for the near-shore current model is specified from
the knowledge of equivalent bottom roughness by application of a modified version of
Madsen’s (1994) wave-current bottom boundary layer model. Model predictions are
also compared with experimental observations.

In Chapter 5, we first summarize the conceptual bedload and associated suspended
load sediment transport models (Madsen, 2001). Introducing surf zone hydrodynamic
characteristics predicted from the present hydrodynamic models, we extend the sed-
iment transport models to the surf zone. Applicability of the present model is then
tested against the LSTF experiments (Wang et al., 2002). Influence of wave non-
linearity and bottom slopes on the net bedload sediment transport rates are examined
and their relative importance are discussed. Sensitivity of the predicted suspended
sediment concentrations to the sediment grain size is also investigated. Finally, we
compare the predicted bedload, suspended load and the total sediment transport bal-
ance in the cross-shore (z) and longshore (y) directions and discuss about the future
modifications of the model.

In Chapter 6, finally, all models and results are summarized and their physical

implications are discussed.
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Chapter 2

Wave Model

As discussed in Chapter 1, an ability to accurately predict near-shore hydrodynam-
ics is essential to capture the characteristics of sediment transport processes and
ultimately to forecast features of coastal morphology. Time-varying near-bottom ve-
locity determines the bottom shear stress, which induces bedload sediment transport.
Skewness and asymmetry of the near-bottom non-linear wave orbital velocity, which
are dominant features for near-breaking and broken waves, may play significant roles
in yielding net bedload sediment transport in the shoreward direction. In this sense,
one of the vital features required for the wave model is to predict the time-varying
profiles of near-bottom non-linear wave orbital velocity.

A number of numerical models for predictions of the non-linear wave character-
istics have been proposed and their predictive performance has also been examined
through comparison with experimental data (e.g., Nwogu, 1993; Isobe, 1994; and
Nadaoka et al., 1994). Among these non-linear wave models, the Boussinesq equa-
tions, first derived by Peregrine (1967) is most widely used. Wei et al. (1995) however
pointed out that the use of the standard Boussinesq equations is restricted to shallow
water areas and to small non-linear effects because the standard Boussinesq equations
are based on the assumptions of weak dispersion and weak non-linearity. Instead
of depth-averaged velocity used in Peregrine’s (1967) Boussinesq equations, Nwogu
(1993) introduced the velocity at a certain depth as a dependent variable and sig-

nificantly improved linear dispersion properties in intermediate water depth. Nwogu
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(1996) furthermore extended his modified Boussinesq model to the broken waves in
the surf zone and run-up of waves in the swash zone. Although the improvement of
the dispersion relationships allowed a extension of the model to relatively deep water,
Nwogu’s (1993) modified Boussinesq equations still can not yield appropriate pre-
dictions in the vicinity of the breaking point where strong non-linear effects are not
negligible. Wei et al. (1995) and Madsen et al. (1996) pointed out this feature and
proposed the fully non-linear Boussinesq equations. These fully non-linear Boussinesq
equations have been extended to the surf zone as well as swash zone (e.g., Madsen
et al., 1997a and 1997b; Kirby et al., 1998; and Chen et al., 2000) and these models
were recently applied in a sediment transport model by Wen and Kirby (2003). How-
ever, adoption of the higher order terms in the modified Boussinesq equations trades
off computational stability and efficiency. Especially for practical use of a model for
the prediction of beach morphology changes requires computational efficiency and
flexibility so that it can accommodate iterative computations under arbitrary beach

profile conditions.

Our goal in this Chapter is therefore to develop computationally efficient and
practically flexible models for predictions of nearshore wave characteristics including
the surf zone. Because of its simplicity and practical applicability, we apply linear
wave theory to estimate wave shoaling and refraction up to the breaking point. After
the waves reach breaking, a broken wave attenuation model is applied. Predictive
schemes for retrieving non-linear wave characteristics from computed linear wave

characteristics must be developed to make our model complete.

A number of breaking wave models based on linear wave theory have been devel-
oped and the validity of these models has been examined through comparison with
measured broken wave heights. As discussed previously, one of the primary goals of
our wave model is to predict appropriate non-linear near-bottom wave orbital veloc-
ity profiles that significantly contribute to the sediment transport processes. Because
most breaking wave dissipation models are calibrated only in terms of the broken
wave heights, however, it is not clear how one can obtain these non-linear features

from knowledge of the wave height alone. From consideration of conservation of wave
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energy, non-linear wave heights are usually larger than the corresponding linear wave
heights. Thus, if one uses a measured or predicted non-linear wave height, as if it
were a linear wave height, to calculate wave energy or wave energy flux from linear
theory, these quantities will generally be overpredicted. In this sense, broken wave
models based on linear wave theory must be calibrated with linear wave heights that
somehow are equivalent to the measured, non-linear, wave heights.

In this chapter, we first introduce the concept of an equivalent linear wave and
explore the relationship between non-linear and equivalent linear wave characteristics
through numerical experiments. Non-linear wave characteristics are then determined
as functions of equivalent linear wave characteristics. The equivalent linear wave
concept is applied to develop a breaking wave dissipation model, which is applicable to
arbitrary beach slope conditions. This breaking wave dissipation model is developed
for simple periodic waves but its application is extended to random, narrow-banded
spectral waves. Finally, the validity of the model is examined through comparison

with experimental data, which have not been used to develop the model.

2.1 Non-Linear Wave Model

In order to develop a non-linear wave model, we introduce the concept of an equiva-
lent linear wave, which defines the relationship between actual non-linear waves and
corresponding linear waves. Based on this concept, equivalent linear wave character-
istics are simply predicted by linear wave theory and, if necessary, non-linear wave
characteristics may be determined as functions of predicted equivalent linear wave

characteristics.

2.1.1 Equivalent Linear Wave

Figure 2-1 illustrates the concept of the equivalent linear wave. The equivalent linear
wave is defined as the linear wave having the identical energy flux as actual non-
linear progressive waves. Since non-linear effects are most pronounced as waves enter

shallow water, it is assumed that the non-linear and equivalent linear waves have the
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Linear VS. Non-Linear

Equivalent linear wave = Linear wave having identical energy flux

Figure 2-1: Concept of the equivalent linear wave.

same deep water characteristics, Ly and Hy/Lo. Shoaling of the equivalent linear
wave produces an equivalent linear wave height H which may be transformed to the
non-linear wave height, H,, by applying a transform relationship which is obtained

from numerical experiments.

2.1.2 Numerical Experiments

In order to explore the relationship between non-linear and equivalent linear wave
characteristics, numerical experiments were performed. Nwogu’s (1993) modified
Boussinesq equations were applied to compute wave shoaling on plane beaches of
various slopes, tan 3y = 1/100, 1/50, 1/35, 1/20, and 1/10, for a range of deep water
wave steepness, Hy/Lo = 0.001, 0.002, 0.005, 0.01, 0.02, and 0.05. Table 2.1 summa-
rizes the numerical experimental cases. Incident wave profiles were obtained from 5th
order Stokes Wave Theory (Isobe, 1978) or Stream Function Theory with 19 terms
(Dean, 1965).

The geometrical conditions for the computations are shown in Figure 2-2. In order

to introduce stable and appropriate incident waves into the system, the constant depth
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Table 2.1: Summary of the numerical experiments

0 ffshore water heident wave heident wave

SLOPE | CASE | Hy/Lg depth @) heighttn) theory
Al 0.001 10.0 0.093 STK5th

A2 0.002 10.0 0.186 SFM 19

1/10 A3 0.005 10.0 0.466 SFM 19
A4 0.010 10.0 0.931 SEM 19

Ab 0.020 15.0 1.824 SFEM 19

A6 0.050 20.0 4.583 STK5th

B1 0.001 10.0 0.093 STK5th

B2 0.002 10.0 0.186 SEM 19

1/20 B3 0.005 10.0 0.466 SFM 19
B4 0.010 10.0 0.931 SEM 19

Bh 0.020 15.0 1.824 SEM 19

B6 0.050 20.0 4.583 STK5th

Cl1 0.001 10.0 0.093 STKbth

C2 0.002 10.0 0.186 SEM 19

1/35 C3 0.005 10.0 0.466 SFEM 19
C4 0.010 10.0 0.931 SEM 19

Ch 0.020 15.0 1.824 SEM 19

C6 0.050 20.0 4.583 STK5th

D1 0.001 10.0 0.093 STK5th

D2 0.002 10.0 0.186 SEM 19

1/50 D3 0.005 10.0 0.466 SFM 19
D4 0.010 10.0 0.931 SFM 19

D5 0.020 15.0 1.824 SEM 19

N6 0.050 20.0 4.583 STK5th

El 0.001 10.0 0.093 STK5th

E2 0.002 10.0 0.186 SEM 19

1/100 E3 0.005 10.0 0.466 SFEM 19
E4 0.010 10.0 0.931 SFM 19

Eb 0.020 15.0 1.824 SEM 19

E6 0.050 20.0 4.583 STK5th

*STK5:Stokes bth order wave theory / SFM 19:S tream functibn of 19th order
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Figure 2-2: Geometrical conditions for the numerical experiment.

region was set at the offshore boundary. The length of this region is 2.5L;, with L,
the incident wave length. The constant offshore depth, h;,, which is shown in Table
2.1 for each case, was selected so as to keep the Ursell number less than 10 and h;y, / Liy,
less than 0.2. This condition allows us to apply both Boussinesq equation and Stokes
wave theory. Near the onshore boundary, constant depth is again assumed and a
sponge layer was introduced in order to absorb the waves and avoid reflected waves.
The constant depth at the onshore boundary was chosen about 50% larger than the
wave breaking depth, which is determined from incident wave conditions by Goda’s
(1970) breaking wave criteria. The starting point of the sponge layer was adjusted as
shallow as possible for the numerical computation keeps stable. As for the sponge-
layer conditions for the numerical computation, we applied the model proposed by
Cruz et al. (1993). The simulations were carried out up to the value of H,/h<0.4
since the Boussinesq approximation is known to yield unreliable results for bottom

orbital velocities when H,/h>0.4. Further details of the numerical scheme are given

by Tajima (2001).
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2.1.3 Non-Linear Wave Parameters

Shoaling non-linear wave characteristics, including near-bottom orbital velocities, are
predicted as functions of deep water wave steepness, Hy/ Lo, relative depth, h/Lg, and
the bottom slope, By. These non-linear characteristics, identified by an asterisk sub-
script, are expressed as dimensionless parameters, H,/H and U, /U, where H denotes
the equivalent linear wave height, obtained by shoaling the same deep water wave to
the relative depth, h/Lg, and U, is the near-bottom velocity ”height” predicted from

linear theory for the equivalent linear wave, i.e.,

Hw
U = Gnhkh

(2.1)

where w = 27 /T and k = 27/ L is the wave number predicted from the linear disper-
sion relationship. The asymmetry and skewness of the near-bottom velocity variation
are represented by 1./T, T. /T, and u., /Uy, where u.,, T., and T, are defined in
Figure 2-3. Both T, and T, are the time for which the near-bottom wave orbital
velocity rises in the wave propagating direction. T, may be nearly equivalent to 1.
if the waves are forward-leaning in shape, i.e. wave asymmetry is relatively strong
on the slope. For the waves with relatively small asymmetry (forward-leaning) but
with large skewness, such as solitary waves propagating on non-sloping beaches, T,
becomes larger than T... For example, T, of Stokes or Cnoidal-type waves should be
T'/2 while T, should be equal or smaller than 7'/2 depending on the intensity of wave
non-linearity.

Figures 2-4 and 2-5 show predicted non-linear wave parameters as functions of
h/Lo and Hy/Lgy for tan 8y = 1/35. Similar figures are obtained with different f.
In Figure 2, solid lines are the recorded values from the numerical simulations and
dotted lines are the following fitting formulae, which are extrapolated and assumed

valid up to the predicted breaking point.

H,/JH = 1+ ajexp|—ash/Lo) (2.2)

a1 = (2.2+4 2tanh (55tan (%)) tanh [(1.6 tan 2 Bo + 25) HO/LO}
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Figure 2-3: Non-linear characteristics of near-bottom wave orbital velocity and defi-
nitions of non-linear wave parameters, 1., T/, Ue,, and Up,.
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1 — by exp [~baho/ Lo] + bs exp [—bsh/ L] (2.3)
5.4 (Hy/Lo)"™

80 (Ho/Lo) ™" — 90

49 [(95 4 1100 exp [—60 tan Fo]) Ho/ Lo|”

X exp [—4¢95 + 1100 exp (—60 tan o) Ho/ Lo

8 (Hy/Lo) *°

0.5 — ¢y exp [—coh /Ly (2.4)
{334 110 exp [—30 tan o]} Ho/Lo + 0.69 exp [~8.7 tan G|

40 + 60 exp [—30 tan F] + 0.3 (Ho/Lo) **

0.5 — czexp [—csh/ Lo| (2.5)
0.5+ 14Hy/Lo + (0.1 — 0.4 tanh (10 tan f)) exp [~300H,/ Lo]

30 + 0.3 (Ho/Lo) **

0.5 + dy exp [—dah/ Lo (2.6)
exp [ exp (—1.3 + 3.6 exp (—30 tan fy))]

x exp [— (0.3 4 0.25exp (—10tan Go)) In (Ho/ Lo)]
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Figure 2-4: Non-linear wave characteristics parameters, H,/H and U, /U, as func-
tions of Ho/ Lo, h/ Lo with tan §y = 1/35; simulations (full line) and fitting formulae
(dotted line).

dy = expl|2.4—0.5exp(—45tan )] (HO/LO)7(0'18+0'246Xp(725tanﬁo))

As seen in Figures 2-4 and 2-5, non-linear effects become stronger in shallower wa-
ter (smaller h/ L) or as Hy/Lg increases. Validity of the formulae in the extrapolated

range 1s examined later through comparison with measured data.

2.1.4 Reconstruction of the Non-Linear Near-Bottom Wave

Orbital Velocity Profile

Introducing the non-linear wave parameters obtained in the Section 2.1.3, approxi-
mate bottom orbital velocity profiles can be modeled as a combination of four sinu-
soidal waves. Figure 2-6 illustrates the approximated velocity profile. Each of the

four sinusoidal curves is numbered. The model outline is as follows.
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Figure 2-5: Non-linear wave characteristics parameters, T, /T, T./T and ., /U,
as functions of Hy/ Lo, h/ Lo with tan Gy = 1/35; simulations (full line) and fitting
formulae (dotted line).
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Figure 2-6: Modeling for reconstructions of the non-linear near-bottom wave orbital
velocity profile

In the figure, each sinusoidal curves is expressed as

Uy = —Uys COS (ﬁt)
Uy = Uey SIN (ﬁ (t — TC,))
Uy, = Upy COS (ﬁ (t — Tc)) + Uew — Upy

ty = —t, €05 (5= (b= To = Toy)) + e —

= W N

Here, uy, T, ,T.,, and T;  shown in Figure 2-6 are estimated from the wave non-linear

parameters from (2.3) through (2.6) as

Uy = Upy — Uy (2.8)
T.. = T.—T./2 (2.9)
T, = Tu/2 (2.10)
T, = T—2T —Tp (2.11)

The last two unknown parameters, up and wu,_ are determined by requiring (2.7) to

be zero if averaged over the wave period and uy, + u,_ to be a velocity “height,” U,
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as

uc*Tc’ + Uy (2 12)
= Up — .
(=72 (T —Tn) " 1—x/2

Uy Lo w2
YT A =2 (T—Ta) 1-1/2 (2.13)

Up+

Applicability of the presented non-linear wave orbital velocity profile model is exam-

ined later in Section 2.6.4.

2.2 Breaking Wave Model

Based on the present equivalent linear wave concept, linear wave theory determines
the shoaling of the equivalent linear waves up to the breaking point. Once the wave
reaches the breaking point, a broken wave model should be applied to evaluate wave
attenuation inside the surf zone. Since the wave characteristics dramatically change
beyond the breaking point, accurate prediction of the breaking point is vital. Since
the present wave model is based on linear wave theory, a breaking wave criterion
should also be cast in terms of linear wave theory for compatibility.

Most of well-known breaking criteria models (e.g. Michell, 1893 and Miche, 1951)
characterize the breaking limit by actual, i.e. non-linear, breaking wave height, Hy,,
as functions of the still water bottom slope, Gy, wave period, T', and the local breaking
water depth, h;. Since strong wave non-linearity is expected near the wave breaking
point, predictions of the non-linear wave heights around the breaking point may
contain certain errors. In this sense, even if we could specify the exact breaking wave
heights from existing breaking criteria, we may not be able to locate the right breaking
point because of uncertainty in predicted non-linear wave heights. Watanabe et al.
(1984) also pointed out that most existing breaking criteria, such as Iversen’s (1951)
and Goda’s (1970) criteria, may not be applicable to compound waves because these
models are based on observations of a single wave train propagating on a sloping
bed. Watanabe et al. (1984) discussed physical mechanisms of breaking waves and

suggested that the ratio of water particle velocity at the wave crest and the wave
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phase velocity, u./C, in stead of Hy./hy, may characterize the breaking criteria for
both single train and compound waves. Since Watanabe et al.’s (1984) breaking
criteria, (u./C'),, is based on the linear wave theory, their model is ideally suited for
application in conjunction with our equivalent linear wave. Thus, we follow Watanabe
et al’s (1984) concept and modify their model adding recently obtained breaking wave
data.

2.2.1 Model Concept

Similar to Watanabe et al.’s (1984) model, we characterize the breaking criteria by a

ratio of water particle velocity near the wave crest and the wave phase velocity,

2u.\  keH,
( C >b = tanhfah, | e/ Lo, tan fo) (2.14)

where k, = 27/, is a wave number at the breaking point. Note that the left hand
side of (2.14) becomes k,H, = 27 (H,/Ly) for the deep water limit, tan kyh, — 1, and
it approaches Hy/hy for the shallow water limit, tan kyh, — khy. These features are
consistent with well-known existing breaking indices. For instance, Michell (1893)
characterized the deep water breaking criteria by wave steepness, H,/L; and Battjes
(1974) proposed multiple values of v, = H,/hy, for nearshore breaking waves depending
on breaker types, such as plunging and spilling breakers. Hence the use of (2.14)
should serve as a general breaking index applicable to both deep and shallow water

conditions.

2.2.2 Modeling Fitting Function

The fitting function, f, in (2.14) is modeled so that the model satisfies Michell’s
(1893) deep water breaking wave criteria. According to Michell (1893), breaking

wave steepness in the deep water becomes constant,

= 0.142 (2.15)



Transforming (2.15) to the equivalent linear wave characteristics yields
— =0.17 (2.16)

Imposing our model to assure (2.16), the fitting function f must converge to a constant
value, [ — 2mH,/L, = 27 x 0.17 ~ 1.07, for a deep water limit, h;/Lo > 0.5.

Requiring this condition, define the form of f by

hy | hy \ "
=107 —aexp [—GQ (L—b> + ag tan” Bo exp [—cu (—b>
0

2.17
o 2.17)
This form is similar to Isobe’s (1986) breaking formula, which is fitted to Watanabe

et al.’s (1984) breaking criteria. Best-fit parameters, a; and b; are obtained through
Monte-Carlo least-square inversion method with the following constraints in deep and

shallow water limit.

Constraint in deep water limit

As discussed in the general concepts, the model has to become constant when hy, /Loy >
0.5, which is the deep water wave condition. In order to ensure this feature, we

included the constraint stated by

11.07 — f (hy/Lo)| <0.01 for kh>0.5 (2.18)

Constraint in shallow water limit

As discussed later in Section 2.3, it is observed that, well-inside the surf zone, broken
waves stop breaking and recover when the ratio of wave height and the water depth,
~v = H/h, reaches its recovery value, 7,. From this observation, breaking wave height

must be larger than this recovery wave height, i.e.

f>v%=03 for kh—20 (2.19)
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Any combinations of parameters that violate either (2.18) or (2.19) were discarded
through Monte-Carlo method. Experimental data used to obtain optimum coeflicients

for (2.17) are summarized in the following section.

2.2.3 Experimental Data

In order to determine the fitting function, f (hy/Lo,tan () introduced in (2.17), we
need to know dimensionless parameters of hy, /Lo, tan 8y, and k; Hy / tanh kyhy,. Among
these parameters, the breaking water depth, h;, deep water wave length, Ly and the
bottom slope, tan y, are directly obtained from the experimental conditions and
observed data. The wave number at the breaking point, k;, can also be determined
by linear wave theory from h; and the wave period, T'. Finally, the equivalent linear
breaking wave height, H;, is computed from incident wave conditions measured near
the wave maker by linear wave theory with Hunt’s (1952) wave attenuation formula

due to friction along side walls and bottom.

Table 2.2 summarizes the experimental data used in this study. In Table 2.2,
N is the number of data sets available in each experiment and Hy/Lg is a deep
water wave steepness equivalent to the linear breaking wave height, H,. Equivalent
linear breaking wave height, H,, obtained from incident wave conditions should be
smaller than measured, i.e., non-linear breaking wave heights, Hy, neqs, because the
non-linear wave height is usually larger than equivalent linear wave height. However,
as is also pointed out by Goda (1970), some data sets shown in the table exhibited
Hy, > Hyymeas- This contradiction may be partially due to underestimation of the
wave attenuation by Hunt’s (1952) formula. While Hunt’s (1952) model is based on
laminar boundary layer conditions, actual wave attenuation may be larger because
of the intensive turbulence especially near the breaking point. To avoid obtaining an

unrealistic breaking criteria, we excluded these experimental data.

Figure 2-7 shows the distributions of kyH,/ tanh kyh;, obtained from the experi-
mental data as functions of tan 3y and hy/Lo. As seen in the figure, k, H,/ tanh kyhy,

decreases as hy /Lo and tan By decrease.
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Table 2.2: Summary of experimental data (N is the number of data available)

Authors N tan Gy Hy/ Lo
Iversen (1951) 63 | 1/10,20 30,50 | 0.0023-0.073
Goda (1964) 33 1/100 0.0026-0.048
Toyoshima et al. (1967) 68 1/20, 30 0.0035-0.061
Bowen et al. (1968) 11 1/12 0.0071-0.049
Nagayama (1983) 1 1/20 0.025
Hansen and Svendsen (1984) | 1 1/34.25 0.017
Okayasu(1988) 9 1/20 0.0087-0.049
Sato et al. (1988) 3 1/20 0.029-0.048
Cox and Kobayashi (1996) | 1 1/35 0.014
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Figure 2-7: kH,/tanh khy vs. hy/Lo (experimental data)
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2.2.4 Complete Breaking Criteria

Finally, the best-fit curve, f, satisfying (2.18) and (2.19) is calibrated and the com-

plete breaking wave criteria is expressed by

Ky H,, hy,
= 1.07 - 0.59 —8.6—>
tanh &y, eXp( Lo)
h 1.5
+2.59 tan f exp (—15.1(L—b> ) (2.20)
0

Figure 2-8 shows the comparisons of the present index, (2.20), Watanabe et al.’s
(1984) index, and the experimental data used in this study. As seen in the figure, the
present breaking criteria reasonably represents the experimental data. Comparing
with Watanabe et al.’s (1984) index, the present breaking model tends to predict a
larger breaking parameter, k, H,, / tanh kyhy, in deeper water, h,/ Lo > 0.1, and smaller
kyHy/ tanh kyhy in relatively shallow water, h; /Lo < 0.1. This difference is physically
more intuitive if the breaking indices are transferred to relative depth, h,/Hp, in
terms of Hy/Lo and tan Fp as shown in Figure 2-9. This index directly predicts the
breaking water depth once the bottom slope and the deep water wave characteristics
are specified. As seen in the figure, the present criteria agree well with experimental
data and predicts larger breaking water depth than Watanabe et al’s (1984) criteria
when Hy/Lg is relatively small. Figure 2-10 shows the relative errors of predicted
and measured breaking water depth for each bottom slopes (1 — hy gata/ P prea.) and
Table 2.3 shows the means () and the standard diviations (o) of these relative error
in each bottom slope and in all the data sets. The table also shows the same relative
error analysis for Watanabe et al.’s breaking criteria. As seen in Figure 2-10, the
errors are evenly distributed around the predictions along wide range of Hy/Ly and
tan fp. From Table 2.3, the mean error (bias) of the predictions against the entire

data sets is less than one percent and its standard diviation is less than 10 percent.

Figure 2-11 shows the distribution of H,, /h; as a function of hy /Ly and the uniform
bottom slope, Fy. The present model first determines H,/hy from (2.20) and (2.2) is

applied to evaluate the equivalent non-linear breaking wave height, H,,, and finally
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Figure 2-8: Comparisons of the present model and measurements of breaking wave
parameter, kH,/ tanh kh;, as functions of h,/ Ly and tan fy; Present index (full line),
Watanabe et al.’s (1984) index (dotted line) and measurements on various slopes
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Table 2.3: Means and standard diviations of relative errors between predicted and

measured breaking water depth.

tanB, Present Model Watanabe et al.(1984)

K (%) o (%) 1 (%) o (%)
1/10 0.38 11.09 -5.90 18.11
1/20 1.97 9.51 -2.27 9.27
1/30 0.79 8.90 -4.61 11.08
1/30- 170 8.28 13.71 3.16 13.04
1/70 - 1/100 -2.31 8.31 -10.95 13.59
Total 0.95 9.60 -4.91 12.27
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Figure 2-9: Comparisons of the present model and measurements of relative break-
ing water depth, h;/Hy as functions of Hy/Ly and tan y; Present index (full line),
Watanabe et al.’s (1984) index (dotted line) and measurements on various slopes
(circles, triangles, and diamonds)
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functions of Hy/Lg and tan fy.
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Figure 2-11: Comparisons of Hy,/h; as functions relative breaking water depth, h;/ Lo,
and the bottom slope, fy, predicted by Goda’s (1970) model and the present model;
Present model (full line) and Goda’s (1970) model (dotted line and circles).

yield Hy./hy. In the figure, solid lines are predictions of the present model and
circles were obtained from Goda’s (1970) breaking criteria. As seen in the figure, our
model agrees very well with Goda’s empirical curves, which are based on a number
of experimental data. It should be stressed that we are not using the measured non-
linear breaking wave height, H,, to construct our breaking criteria. Figures 2-9, 2-10,
and 2-11 therefore verify the validity of both non-linear wave and linear breaking

criteria models, i.e. equations (2.2) and (2.20).

2.3 Broken Waves

Once the wave reaches the breaking point and progresses beyond breaking, energy
dissipation must be introduced in the wave energy balance equation in order to eval-

uate the attenuation of the broken wave heights. We adopt Dally et al.’s (1985)
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formulation for the breaking wave energy dissipation model

a(EC) G
T = Kyt (B - B) (2.21)

where K} is a proportionality constant, C; is the (linear) group velocity, £ = pgH?/8
is local wave energy where H = ~h is the equivalent linear wave height and F, is
the wave energy based on the recovery wave height, H, = 7,h, of the broken wave if
it were to continue to travel in the local depth, h. As seen from (2.21), the energy
dissipation rate is assumed to be proportional to the amount by which the local wave
energy flux exceeds its recovery value.

Wave set-up, 7, is computed from the cross-shore force balance given by

o7 1 08,
— = —— 2.22
Ox pgh Ox (2:22)
where
C 1
= F (2= — —) 2.2
5 < c 2 (2.23)

is the radiation stress.

2.3.1 Determination of K,

In contrast to Dally et al. (1985), who took K,=constant, we follow a similar proce-
dure to that of Watanabe and Dibajnia (1988), whose dissipation model is different
from (2.21), and determine K, as a function of bottom slope conditions. In order to
determine K, we make use of the experimental observations that broken waves on
a plane beach, well inside the surf zone, approach a constant wave height to depth
ratio (e.g. Figure 6 in Horikawa and Kuo, 1966). In other words, we assume that,
well inside the surf zone, H = ,h with ys=constant, i.e., 9y,/0x = 0 where x is the
horizontal axis in the wave propagation direction. Substituting this condition into

(2.21) and applying linear long wave theory, Kj, is derived as

K:—§ Vi Oh _5yltanf
T2 20 2922

(2.24)

58



where tan 3 = 0h/0x = O (hg + 7) /Ox is the slope of the mean water depth. As
seen in Eq. (2.24), K, is now a function of effective beach slope, 3, which is an

improvement of Dally et al.’s (1985) model.

2.3.2 Evaluation of v, and -,

The information we now require to complete (2.24) is the values of ~, and ~,. Since
our breaking wave dissipation model is based on linear wave theory, v, and 7, should
also be the values corresponding to the equivalent linear wave heights. In order to
determine these values, we use existing experimental data on broken wave heights
well inside the surf zone on plane beaches for various slopes, 3. The data used were
obtained by Horikawa and Kuo (1966), Nadaoka et al. (1982), Nagayama (1983),
Hansen and Svendsen (1984), Okayasu et al. (1988), Sato et al. (1988), and Okayasu
and Katayama (1992) and for each data set only the broken wave height closest to
shoreline, i.e., well inside the surf zone, is used. From these experimental data, we
obtain the ratio, 7,,, of measured and therefore non-linear wave height, H,, to local
depth, h, for a variety of bottom slopes. For 3 = 0, i.e., broken waves traveling into
water of constant depth, s (0 = 0) = ~,. represents the non-linear recovery wave
height. Using the experimental information on 3, h/ Lo, and Hy/ Lo, Eq.(2.2) is used
to transform the measured non-linear wave heights to their linear equivalents. Details
of this procedure are explained in the following section on Model Application when
H, is known. In this manner, the ratio, s, of equivalent linear wave height to water
depth is obtained for different slopes (with e (8 =0) = 7). Figure 2-12 shows
the distribution of s as a function of 3. Figure 2-12, in which 180 ~s-values are
plotted, shows a relatively small scatter and clearly demonstrates that v, is a rather
well-defined function of 3. Moreover, since v, and -y, values were found not to exhibit
any systematic dependency on other parameters, such as Hy/ Ly and h/Lg, we simply
determine 5 as a function of 3 by linear regression of the data shown in Figure 2-12.

The resulting expression for 75 and -, are then given as

Vo =" + Atan 3 = 0.3 + 4tan 3 (2.25)
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Figure 2-12: ~, vs. tan 3; experiments (circles) and Eq.(2.25) (full line)

For negative slopes, 3 < 0, e.g. corresponding to the landward slope of an offshore
bar, (2.24) is evaluated as if § = 0 for which the present model, in contrast to the
model by Watanabe and Dibajnia (1988), gives a non-zero value of K, = 0.094.
Validity of this procedure when 3 < 0 is examined later through comparison with

measured data.

2.4 Model Application

Since the present model is based entirely on the equivalent linear wave, it is relatively
simple to apply. If information on local measured (non-linear) wave height is avail-
able, we may use this information to evaluate the equivalent linear wave and then
other non-linear wave characteristics such as near-bottom orbital velocity. Otherwise,

equivalent linear wave conditions will be directly predicted by linear theory coupled
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with the breaking wave model. Non-linear wave characteristics are then determined
from predicted equivalent linear wave characteristics. Computational methodologies

for these two scenarios are outlined in the following sections.

2.4.1 H, is Known

If local non-linear wave height, H,, local water depth, h, and local bottom slope, (3,
are known, we first guess the equivalent linear wave height, H’, which may be slightly
smaller than H,. From given H’', h, and wave period, T, corresponding h/Ly and
H|,/ Lo are computed by linear theory. Here, Hy is determined as the deep water wave
height that through linear shoaling to the given water depth, h, results in the linear
wave height, H'  i.e., H) = H'/K,, where K is the linear shoaling coefficient, no
matter how the wave has traveled and deformed to arrive at that particular location.
The non-linear wave height, H., is then predicted by substituting H', h/ Ly, H}/ Lo
and fp into (2.2). If H) is not identical to H,, the value of H' is modified and the same
procedures repeated until H, = H, is obtained. Once H, = H,, the equivalent linear
wave height is determined as H = H' and Hy = H/K, after which other non-linear

wave characteristics may be evaluated from (2.3) to (2.6).

2.4.2 H, is Unknown

For given deep water (linear) wave conditions, linear theory is used to shoal the
waves up to the breaking-point which conveniently is expressed by (2.20) in terms of
the equivalent linear wave characteristics. After the breaking point, (2.21) is solved
numerically, with K locally given by (2.24), to obtain the variation of the equivalent
linear wave height shoreward of the break-point. If the local bottom slope becomes
negative, fp = 0 is assumed. Wave set-up is also numerically computed by (2.22)
and change of the mean water level is reflected in the mean water depth as numerical
computation proceeds landward. Non-linear wave characteristics are evaluated from
(2.2) to (2.6). Similar to the procedure when H, is known, Hy is determined from the
linear shoaling coeflicient, i.e., Hy = H/K,, where H is the predicted local equivalent
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linear wave height.

2.5 Extension of the Model to Random Waves

Since the breaking wave dissipation model is based on linear wave theory, it is possible
to make a simple extension of the model to random wave conditions. In order to
develop the breaking random wave dissipation model, we first make the following
three assumptions: (i) random waves are narrow-banded and represented by a single
period; (ii) wave heights are Rayleigh distributed; and (iii) only waves of heights
larger than the local breaking wave height are breaking. Under these assumptions,

the averaged energy balance equation (2.21) for the random waves is expressed as

9
Ox

K

/ooop<£> ECdf = _beg /:P(E) (F— E,)d§ (2.26)

where p (£) = 28 exp (—£?), £ = H/H.pms and & = Hy/Hpms. The left hand side of
(2.26) is identical to the periodic equation (2.21) with the wave height being replaced
by the rms value for the random wave conditions. The right hand side of (2.26),
however, receives contributions only from individual waves with heights greater than
the breaking wave height corresponding to the local depth. This contribution is
evaluated from the assumed Rayleigh distributed wave heights, and the model is
readily applied for random waves to predict local rms wave heights, H, s = Yrmsh,

by the following formula

WD) ey () [ (14€) - B3] (227)

where E = pgH2,./8, E, = pg (+h)* /8 with 7, determined from (2.25) and H, used
in &, is determined by use of (2.20).
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2.6 Comparison with Experimental Results

2.6.1 Wave Heights and Wave Set-up

Figure 2-13 shows a comparison of predicted (non-linear) and measured wave heights
and wave set-up obtained from (2.22) for the experiment with periodic waves nor-
mally incident on a straight beach reported by Cox and Kobayashi (1996). In the
figure, predicted equivalent linear wave heights are also shown. As seen in the Figure,
predicted equivalent linear wave heights are clearly smaller than the measured wave
heights while predicted non-linear wave heights agree well with the experimental data.
It is emphasized that H,/h ~ 0.8 in the vicinity of the breaking point. Thus, the
excellent agreement between measured and predicted non-linear wave heights in the
vicinity of the breaking point verifies the applicability of our extrapolated transform
formula for wave heights, (2.2), beyond the computed range of H,/h < 0.4. Figure
2-14 shows a comparison of predicted and measured significant wave heights and wave
set-up for one of the experiments with random waves normally incident on a barred
concrete beach profile reported by Okayasu and Katayama (1992). Figures 2-15 and
2-16 show the same comparisons for the experiments with random waves obliquely
incident on barred movable bed beach profiles reported by Wang et al. (2002). The
angle of incidence in the experiments reported by Wang et al (2002) is small, less than
10°, so the effect of oblique incidence is safely neglected in the breaking wave and
set-up model which treats the waves as normally incident. As seen in Figures 2-14
through 2-16, predictions of both wave heights and mean water level agree well with
measured data even where the water depth is increasing, i.e., < 0, on the landward
side of the bar. Moreover, it should be pointed out that all predictions agree well with
measurements in spite of none of these experiments having been used to calibrate the

model coefficients.
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Figure 2-13: Comparison of measured and predicted wave heights and wave set-up
(Cox and Kobayashi, 1996); measurements (circles), predicted non-linear wave heights
(full line), and predicted equivalent linear wave heights (dotted line).
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Figure 2-14: Comparison of measured and predicted significant wave heights and
wave set-up (Okayasu and Katayama, 1992); measurements (circles) and predictions

(full line).
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Figure 2-15: Comparison of measured and predicted significant wave heights and wave
set-up (Wang et al., 2002, spilling breaker); measurements (circles) and predictions

(full line).
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Figure 2-16: Comparison of measured and predicted significant wave heights and wave
set-up (Wang et al., 2002, plunging breaker); measurements (circles) and predictions

(full line).
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2.6.2 Slope-Dependency of the Wave Attenuation

In order to examine the slope-dependency of the present model, the model was applied
to different bottom slope conditions. Figure 2-17 shows the comparisons of wave
heights predicted by the present and Dally et al.’s (1985) models with experimental
data for periodic waves incident on straight beaches with various slopes. In the
figure, non-linear wave heights predicted by the present model are compared with
the measurements. For the computations of Dally et al.’s model the present non-
linear wave and wave breaking models were applied up to the breaking point since
their model does not determine the non-linear breaking wave heights. Experimental
data were obtained by Mizuguchi et al. (1978), Okayasu and Katayama (1992), Cox
and Kobayashi (1996) and Stive and Wind (1986) for 1/10, 1/20, 1/35 and 1/40,
respectively. From the comparisons with data, the present model predicts reasonable
non-linear wave heights up to the breaking point. In the surf zone, agreement of
broken wave heights between data and the present model is also excellent while Dally
et al.’s model, which applies a constant K, over-predicts broken wave heights when
tan = 1/10, for which larger K}, is required for better predictions. This comparison

therefore verifies the slope-dependency of K; as proposed in the present model.

2.6.3 Non-linear Velocity Parameters

Figure 2-18 shows the comparison of non-linear parameters of the near-bottom wave
orbital velocity for the experiment by Cox and Kobayashi (1996), which is the same
experiment used in Figure 2-13. In this figure circles are the values obtained from
the measured data and solid lines are the predictions obtained from (2.3) to (2.6)
using predicted equivalent linear wave heights. Again it is noted that the excellent
agreement near the breaking point, where H, /h ~ 0.8, supports our use of the extrap-
olated transform formulae for non-linear near-bottom orbital velocity characteristics.
As seen in the figure, predictions of velocity height, Uy, and T./T agree very well
with the measured data while the model overpredicts u.,/U, inside the surf zone.

Since the agreement between measured and predicted u../Us. is quite good in the
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Figure 2-17: Comparisons of predicted (full line) and measured wave heights on
uniform slopes. Measurements were reported by Mizuguchi et al. (1978), Okayasu
and Katayama (1992), Cox and Kobayashi (1996), and Stive and Wind (1986) for
tan By = Oho/0x =1/10, 1/20, 1/35, and 1/40.
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Figure 2-18: Measured and predicted non-linear wave characteristics of near-bottom
orbital velocity profiles. (Cox and Kobayashi, 1996); measurements (circles) and
predictions (full line)

vicinity of the break-point, this disagreement inside the surf zone suggests that other
physical mechanisms should be accounted for inside the surf zone in order to improve

predictions of near-bottom orbital velocity skewness.

Similarly, Figure 2-19 shows predictions of non-linear wave height, H,, non-linear
near-bottom wave velocity height, U,,, and asymmetry and skewness parameters,
T.)T and u.,/Uy, compared with measurements for periodic waves incident on a
uniform slope (Test 6A-N reported by Hamilton and Ebersole, 2001). Here, T, is
the time between minimum and maximum near-bottom wave orbital velocity and

Uex 1s the maximum near-bottom orbital velocity. Hence T,/T = e /U = 0.5
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for linear sinusoidal waves. Measured values, shown as circles, were obtained by
averaging 200 measured waves and the vertical lines represent the standard deviation
of the measured data around the mean. As seen in Figure 2-19, excellent agreement
is obtained between model predictions and measurements especially for U,,, which
plays an important role in the present hydrodynamic model’s determination of the
combined wave-current bottom shear stress. Whereas the model accurately predicts
wave asymmetry, 1./T, it tends to over-predict the skewness parameter, w../Up.
inside the surf zone. Since the present non-linear wave model is based on Nwogu’s
(1993) modified Boussinesq equations, this comparison suggests that the Boussinesq
equations may over-predict skewness of near-bottom wave orbital velocity inside the
surf zone. Watanabe and Elnaggar (2000) pointed out that Boussinesq equation
tends to overpredict u., inside the surf-zone from the comparisons of predicted and
measured near-bottom wave orbital velocity profiles for periodic waves incident on a

plane beach.

Figure 2-20 shows comparisons of predicted and measured wave heights and near-
bottom wave orbital velocity heights for random waves incident on a uniform slope
(Test 8A-E reported by Hamilton and Ebersole, 2001). The observed values for H,.,
and Uppms shown as circles in Figure 2-20 were obtained from the measured time-series
of surface elevation, 7 (1), and near-bottom velocity, u; (t), through spectral analysis.
Spectral contributions from frequencies above 4Hz and below 0.2Hz were omitted to
remove high-frequency noise and surf-beats, which are not included in our steady state
wave model. Noise-less time-series of 7 (1) and wu; (1) were then reconstructed from
the these truncated spectral components and applied for individual wave analysis
based on the zero-up-cross method. H,,,, and Uy, obtained from individual wave
analysis yielded near-identical values to those obtained from spectral analysis. Since
the spectral analysis is based on linear theory and therefore yields linear rms-values,
predicted H,,,; and Uy, shown in the figure are based on linear theory. A measure
of asymmetry, T./T, and skewness, ., /Uy, for the random waves, compatible with
our equivalent linear wave predictions, was obtained by individual wave analysis of

the reconstructed time-series. Only waves with velocity heights, Uy, larger than
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Figure 2-19: Comparisons of measured and predicted wave heights, H,, near-bottom
wave orbital velocity height, Uy, asymmetry, T./T, and skewness, u.,/Us., for peri-
odic waves on plane 1 on 30 sloping beach. Measurements by Hamilton and Ebersole

(2001): Test 6A-N
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the median value of all individual waves were considered, and the resulting mean
values of T,./T and u., /Uy, are shown as full circles in Figure 2-20, with vertical lines
representing the standard deviation around the mean.

Figures 2-21 and 2-22 show the same comparisons as Figure 2-20 but for random
waves obliquely incident on movable bed beaches, respectively. Incident wave steep-
ness for Figure 2-21 is smaller than that of Figure 2-22 and the waves in Figure 2-21
were spilling breakers and plunging breakers in Figure 2-22.

From comparisons in Figures 2-20, 2-21, and 2-22, the excellent predictive skills
of the model are seen especially for predictions of H,,,s and Uy, which are of the
most importance to determine bottom boundary conditions applied for the present
near-shore mean current model. Good agreements shown in Figure 2-21 and 2-22
verify the model applicability to natural beach profiles in the field and arbitrary
breaker types. Similar to the periodic wave case, Figure 2-19, predicted 7./7T and
Uex [Upy agree well with measurements “outside” the surf zone but the model tends
to overpredict u.,/Up inside the surf zone. Equally good performances of the model
for prediction of H,,s were presented by Tajima and Madsen (2002) and will be seen

later when testing the near-shore mean current model in Chapter 4.

2.6.4 Non-Linear Near-Bottom Wave Orbital Velocity Pro-
files

Applicability of the non-linear near-bottom wave orbital velocity profile model is
tested by comparing the model with experimental data obtained by Cox and Kobayashi
(1996) and with Cnoidal Wave Theory (Isobe, 1979).

Besides wave heights and the wave set-up, Cox and Kobayashi (1996) also mea-
sured the time-series of the current velocity at multiple cross-shore locations and
multiple elevations. Figures 2-23 and 2-24 show the comparisons of measured and pre-
dicted near-bottom wave orbital velocity profiles. In the figure, the measured “mean”
velocity profiles were obtained by separately averaging the measured near-bottom ve-

locities at the same wave phase. We then subtracted the net current velocities from
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Figure 2-20: Comparisons of measured and predicted wave heights, H,, near-bottom
wave orbital velocity height, Uy, asymmetry, T,./T’, and skewness, ., /Uy, for random
waves on plane 1 on 30 sloping beach. Measurements by Hamilton and Ebersole

(2001): Test 8A-E
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Figure 2-21: Comparisons of measured and predicted wave heights, H,, near-bottom
wave orbital velocity height, Uy, asymmetry, T,./T’, and skewness, ., /Uy, for random
waves on movable bed beach. Measurements by Wang et al. (2002): Test 1, spilling
breaker.
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Figure 2-22: Comparisons of measured and predicted wave heights, H,, near-bottom
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breaker.

76



the obtained velocity profiles so that the component of mean return flow velocty is
excluded. Development of a predictive model for the mean current velocities will be
discussed later in Chapter 4. The non-linear wave parameters were predicted from
the measured local wave heights at the same cross-shore location to avoid the pre-
dictive errors of our breaking and broken wave models. Methodologies for predicting
non-linear wave parameters from known non-linear wave heights, H,, are as discused
in Section 2.4.1. Cross-shore locations of each station shown in Figures 2-23 and
2-24 are identical to where the wave heights were measured (see Figure 2-13) and
the station number in Figures 2-23 and 2-24 increases from deeper water toward the
shoreline. As seen in Figure 2-13, station 1 is outside the surf zone, station 2 is in
the vicinity of the breaking point, and stations 3 through 6 are inside the surf zone.
Predicted approximation profiles agree well with measured data even inside the surf

zone.

2.7 Summary and Conclusions

Numerical experiments with weakly non-linear periodic waves shoaling across a plane
sloping bottom were used to establish simple expressions relating non-linear wave
characteristics, x,, to those obtained when the waves were shoaled according to linear

wave theory, z. These relationships, (2.2) through (2.6), are of the form
Ty = ajf (HO/LOJ h/L07 tan ﬂ) (228)

in which Hy/Lg is the deep water (linear) wave steepness, h/Lg is the local relative
depth, tan 3 is the local bottom slope, and x is the prediction afforded by linear
theory when the deep water wave is shoaled to the local depth, i.e., the equivalent
linear wave conserves energy flux.

Using the relationships represented by (2.28) non-linear wave characteristics may
be reconstructed from knowledge of the characteristics of their linear equivalent. To

obtain this knowledge a model, based entirely on linear wave theory, was developed
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Figure 2-23: Comparisons of measured (dashed lines) and predicted (full lines) near-
bottom wave orbital velocity profiles for periodic waves on plane 1 on 35 sloping
beach. Measurements by Cox and Koabayshi (1996) (at stations 1, 2, and 3).
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for the evolution of wave heights as periodic waves travel from deep water up to their
breaking point and as broken waves on into the surf zone where they dissipate their
energy. Since this model for shoaling, breaking, and broken periodic waves is based
on linear theory, a simple extension to random narrow-banded spectral waves was
presented.

The excellent predictive skills of the model, in terms of its prediction of measured,
and therefore non-linear, wave heights in the vicinity of the breaking point and inside
the surf zone are demonstrated for periodic waves normally incident on a plane beach,
random waves normally incident on a barred concrete beach, and random waves of
small oblique incidence on barred movable bed beach profiles. The model is also
shown to be successful in predicting non-linear characteristics (magnitude, skewness
and asymmetry) of the near-bottom wave orbital velocity around the breaking point
and inside the surf zone.

The present model is simple to apply because it is based on linear wave theory and
the concept of an equivalent linear wave. Since the equivalent linear wave conserves
energy flux the present model should be particularly well suited for the evaluation
of radiation stresses driving long-shore and cross-shore currents. This anticipation
is supported by the demonstrated ability of the present model to accurately predict
wave set-up for both periodic and random waves. Furthermore, the model’s demon-
strated ability to predict near-bottom orbital velocity features, which are of utmost
importance in evaluation of flow resistance and sediment transport processes, sug-
gests its suitability for adoption in models for hydrodynamic and sediment transport

processes in the surf zone.
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Chapter 3

Surface Roller Model

The present wave model, developed in Chapter 2, successfully predicts wave attenu-
ation inside the surf zone and non-linear wave characteristics such as skewness and
asymmetry of the near-bottom wave orbital velocity profiles. Predicted equivalent
linear and non-linear wave characteristics may be applied in other models to pre-
dict wave-induced sediment transport rates as well as other near-shore hydrodynamic
characteristics such as undertow, long-shore current and wave set-up. In order to
explain the increase of the return flow velocity, which is observed inside the surf zone,
however, we need to introduce the concept of surface rollers into the wave model.

Svendsen (1984) first introduced the surface roller model to explain the increase of
the return flow velocity and the surface shear stress inside the inner surf zone. Since
Svendsen’s (1984) model is based on the experimental observations obtained in the
inner surf zone, the model cannot evaluate the smooth evolution of the surface roller
near the breaking point.

Okayasu et al. (1990) pointed out that Svendsen’s (1984) model over-predicts the
surface shear stress in the outer surf zone and proposed a new undertow model with
the assumption that dissipated wave energy due to breaking is transferred to both the
surface roller energy and turbulent energy. It is also assumed that dissipated wave
energy at an arbitrary local point is evenly transferred to the turbulent energy through
a certain distance, which is related to the local depth. The surface roller energy is

then determined as an integration of the remaining dissipated wave energy, which
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is caused by wave breaking but not yet transferred to turbulent energy. Although
their model estimates total volume of the return flow throughout the surf-zone fairly
well, their model still overestimates the surface shear stress near the breaking point.
Since their shear stress model depends only on energy dissipation rate, their surface
shear stress always acts in shoreward direction, which cannot explain the observation
that the surface shear stress near the breaking point tends to act in the seaward
direction. This feature is shown later by the experimental data. Moreover, because
of the complexity of their model, it is difficult to apply this model to random wave

conditions.

Dally and Brown (1995) pointed out the discontinuity of the surface roller evolu-
tion at the breaking point and introduced an energy balance equation for the surface
roller to successfully explain the smooth transition of the surface roller evolution.
Dally and Brown, moreover, calibrated the model against experimental data and an
empirical coeflicient, which determines the dissipation rate of the surface roller energy,
was set to be constant. Since the calibration was done only for experimental cases
for periodic incident waves on plane beaches, applicability of the model to various
beach conditions is suspect. For example, Kurata and Hattori (2000) applied Dally
and Brown’s model to various experimental cases and pointed out that the optimum

dissipation coefficient varies among various experimental conditions.

In this study, we follow a similar approach to Dally and Brown (1995) and develop
the surface roller model which is consistent with the present wave model. Surface
roller energy is first defined and relationships between surface roller energy and other
surface roller characteristics are discussed. Using surface roller energy, an energy
balance equation for the surface roller is developed and coupled with the present
broken wave model. Model extensions to random waves are also developed. Finally,

validity of the model is examined through comparison with some experimental results.

82



Figure 3-1: Sketch of the surface roller

3.1 Model Development

Figure 3-1 illustrates the dimensions of the surface roller. Similar to Dally and Brown
(1995), we first characterize the surface roller in terms of its cross-section area, S,
and mean energy, F,.. From observations, a surface roller is generated on the front of a
broken wave crest and propagates with the broken wave. In this sense, it is reasonable
to assume that the velocity characteristic of the water particles in the surface roller
may be represented by the wave phase celerity, C. Under this assumption, kinetic

energy of the surface roller per unit area, Iy, may be defined as

_ pSs,C?/2 _ pSeC
L 27T

Jo (3.1)

where L is the local wave length and 7" is the wave period. Dally and Brown (1995)
suggested that the actual surface roller energy should be proportional to FE,, with
a proportionality constant greater than unity since water particle velocity in the
roller may vary and be larger than the wave phase velocity, C'. However, we simply
take the total surface roller energy as F,, for the time being because of our limited
understanding of the physical mechanism of surface rollers. When deriving a surface
roller energy balance equation, moreover, it is seen that this proportionality constant

is implicitly accounted for in the other parameters.
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3.1.1 Volume Flux and Depth-Averaged Return Flow Veloc-
ity
Volume flux per unit width, ¢., due to the surface roller is expressed as

Ssr — 2E57’ —
n= n
T pC

(Z%r = (3.2)
where (3.1) was applied and 7 = (cos 6, sin ) is the wave propagation direction with
0, an angle between the cross-shore and wave-propagation directions. Coupling with

linear wave theory, total shoreward volume flux, (), is then expressed as
os 6 (3.3)

Under the assumption of long-straight beach, i.e. 9/9y = 0, depth-averaged return
flow velocity, U, is then determined by requiring total volume flux in z-direction to

be zero, i.e.

U=—q/h (3.4)

3.1.2 Momentum Flux

Similar to Svendsen’s (1984) approach, contributions from the surface roller to the
momentum balance are defined from the depth-integrated mean momentum equations
in j-th horizontal direction (j = 1,2).

a7 ) )

pg (ho + 1) 5 =83 + 5= Sij + 5 —Largj + 755 = 0 (3:5)

where advection terms of the mean current are neglected. In the formula, 7 is an

elevation of the mean water level, S;; is the wave radiation stress tensor defined by

(Mei, 1989)

Cy 2
Sps = E[E (1—|—cos Q)——} (3.6)
EC, .
Sey = Sya = EEQ sin 20 (3.7)



Tpj, 1s the bottom shear stress and momentum flux due to the surface roller, Ry, ;;, is

defined as

SerC? cos? 0

Rsr,mm = p% = QEST COS2 0 (38)

pSerC? cos Osin 0
Rsr,my = Rsr,y:c = I

= F,, sin 20 (3.9)

Especially for long straight beach condition, the wave set-up is determined by

on 0 0

e p Ry ve — Tow (3.10)

The volume flux and the wave set-up determined from (3.4) and (3.10) are com-
pared with experiments to indirectly examine the validity of the present surface roller

model.

3.1.3 Energy Balance Equation for Surface Roller

As seen from (3.2) and (3.8), all surface roller characteristics are defined in terms of
its energy, I,.. In order to determine the evolution of the surface roller energy, we
construct an energy balance equation, which should be compatible with the present

broken wave model expressed in the general two-dimensional form by
_ Ky
V(EC,1) = _TC‘G (E—E,) (3.11)

where V = (9/0x,0/0y) with = and y, cross-shore and along-shore axis and £ =
pgH? /8 is the local wave energy and FE, is based on the recovery wave height, H,, of
the broken wave if it were to travel on in a constant depth equal to the local depth,
h. To construct the surface roller energy evolution equations, we first assume the
following features: (i) a part of the dissipated broken wave energy is provided into
the surface roller and the rest of the broken wave dissipation energy is transferred
to turbulent energy in the water column; (ii) surface roller energy is transported

with wave phase velocity, C; (iii) surface roller energy itself is also dissipated and
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the dissipation rate is proportional to the local surface roller energy; (iv) surface
roller vanishes when broken waves stop breaking and have recovered. Under these

assumptions, the energy balance for the surface roller becomes

¥ (BC,i) +V (By Cif) = [2 E,.C (3.12)

where « is the fraction of broken wave energy dissipation provided into the surface
roller, i.e. o < 1, and Ky, is a proportionality constant to be determined. Note that
(3.12) becomes identical to Dally and Brown (1995) model if @ = 1 and long wave
approximation, i.e. C =~ /gh is applied on the right hand side of (3.12). As seen
in (3.12), the values of o and K, determine the relative importance of each term
in (3.12) and therefore automatically absorb the effect of a proportionality constant
applied to F, in Dally and Brown’s model. « should be in the range 0 < o < 1 but
exact estimation of the parameter is difficult because of the complexity of the feature.
We assume that only the loss of potential energy of the broken waves, which is just a
half of the total wave energy loss in linear theory, is contributed to the surface roller
energy, Fy,., and therefore take v = 1/2. This choice makes some sense since the
surface roller is located above the water surface where potential wave energy resides,
whereas most of the kinetic wave energy is distributed over the entire depth and not
readily supplied to the surface roller energy. Finally, the complete energy balance

equation is obtained by substitution of (3.11) in (3.12)

1

V (EwCri) =+ <KngE —L

= K5,0E5T> (3.13)

As seen in (3.13), it should be pointed out that dissipation terms of waves and surface
rollers, i.e. the terms in the right hand side of (3.11) and (3.12) are essentially identical
because, “recovered energy” of the surface roller, (F,) , should be zero when the

broken wave recovers, i.e. reaches its recovery energy, F,.
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3.1.4 Determination of K, and Physical Implications

Similar to the present broken wave model, K, may be a function of the slope although
Dally and Brown (1995) suggested K, to be constant, K. = 0.2. Since formulations
of energy dissipation models for waves and surface rollers are identical, K, may
also be related to K;. Recalling our model assumption that half the broken wave
energy dissipation is directly going into turbulence while the other half is going to
the surface roller energy and subsequently into turbulence, it appears reasonable to
assume that the mechanism by which the wave energy dissipation is transferred to
turbulent energy should be similar for wave and surface roller and we therefore take

Ks = Ky with K, determined from (2.24) in Section 2.3,

_§'y§tanﬂ

K, =
27 =%

(3.14)

Figure 3-2 shows the comparisons of the non-dimensional volume flux predicted
by the present and Dally and Brown’s (1995) models for the same experimental data
shown in Figure 2.19, which compared slope-dependency of the broken wave atten-
uations on straight beaches with different bottom slopes. In the figure, hg is local
still water depth and hyg 1s the still water depth at the breaking point. The non-
dimensional volume flux, ¢, was obtained by dividing predicted volume flux, ¢,, by
\/ghh and normalized by the value at the breaking point. In the experiments, g,
was obtained by integrating the measured vertical profiles of U over the water depth.
The volume flux predicted from (3.3) agrees well with measurements on various bot-
tom slopes, tan By = Ohg/Ox. On the other hand, Dally and Brown’s (1995) model
over-predicts the volume flux especially in the outer surf zone. This over-prediction
may be partially because of the over-predictions of the wave volume flux, ¢, since
the predicted volume flux at the breaking point, where the surface roller starts to
contribute, is larger than the measured ¢/,. Dally and Brown (1995) pointed out that
Guwz 18 over-predicted if one were to apply linear theory based on the measured non-
linear wave height and showed that the numerical application of the Stream Function

Theory yields better predictions of g,,. In the present comparison, however, we apply
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Figure 3-2: Comparisons of measured and predicted non-dimensional volume flux
with periodic waves incident on uniform slopes. Resources of the experimental data
were the same referred in Figure 2-17, i.e. by Mizuguchi et al. (1978), Okayasu
and Katayama (1992), Cox and Kobayashi (1996), and Stive and Wind (1986) for
tan By = Oho/0x =1/10, 1/20, 1/35, and 1/40; Present Model (full line) and Dally
and Brown’s Model (dashed line).
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linear theory based on the predicted equivalent linear wave heights, which are smaller
than non-linear wave heights, for both Dally and Brown’s and our model. According
to Tajima (2001), ¢, obtained in this manner agrees reasonably well with numerical
predictions by Stream Function Theory except very near the breaking point where
H,/h is very large. In this sense, we can still expect reasonable predictions of ¢y,
in the surf zone where H,/h is not as large as at the breaking point. It should also
be noted that, in this comparison, Dally and Brown’s energy balance equation was
applied to the predicted equivalent linear wave conditions although their model was
originally calibrated by using measured non-linear wave heights. If one were to use
measured or predicted non-linear wave heights to evaluate the surface roller energy
from Dally and Brown’s model, the predicted surface roller energy and therefore ¢,
would be larger than shown in Figure 3-2, and the over-prediction by Dally and
Brown’s model would become even more pronounced. It is also seen in Figure 3-2
that the over-prediction of ¢, by Dally and Brown’s model increases as the bottom
slope becomes larger. Similar to the comparisons of the broken wave heights in Figure
2-17, this observation verifies a slope-dependency of K, as proposed in the present

model.

3.2 Extension of the Model to Random Waves

Both wave and surface roller models are now complete for periodic wave conditions.
Since both wave and surface roller models, (2.21) and (3.13), are governed by simple
energy balance based on linear wave theory, the models are also readily extended to
random wave conditions. As discussed in Section 2.5, the local mean wave energy for
random waves ise obtained from (2.27),

V (EC,f) = —Kb% exp (=&) [B (14 &) — B (3.15)

The surface roller energy balance equation for random waves is identical to (3.13)

but replacing the wave energy dissipation, seen in the first term of the right hand
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side of (3.13), by the wave dissipation for random waves, i.e. the right hand side of
(3.15):

V (B, CH) = % <% exp (~€) [B(1+8) - 1] - CE5T> (3.16)

Here the surface roller energy is taken to be the average value. Since all other char-
acteristics such as volume and momentum fluxes are determined in terms of the wave
and surface roller energy, the same formulae, (3.2) and (3.8) are also applicable to

random waves.

3.3 Numerical Application of the Model

From specified deep water wave conditions, i.e. the equivalent linear incident wave
conditions are known, wave shoaling is computed by use of linear wave theory up to the
breaking limit determined by (2.20). After the breaking point, (3.11) is discretized in
a horizontal space grid and the shoreward unknown wave energy, F; 1, is numerically
solved from known variables such as F; with i, shoreward grid number. Since ;1 is
also unknown, numerical iteration is required with initial condition, 7;{1 = 7;. In the
numerical iteration, 7, is determined from (3.10) with Ej,,,, obtained from (3.12).
For random waves, (3.15) is applied instead of (3.11) in the entire computational
region because a certain number of waves are always broken under the assumption
of the Rayleigh distributed wave heights. Total volume flux and therefore the depth-

averaged undertow velocity are then determined from (3.3) and (3.4).

3.4 Test of the Model

The predictive ability of the present model is examined through comparisons with
experiments for periodic and random waves incident on uniform plane beaches and
random waves incident on a barred beach.

Figure 3-3 shows the predicted wave heights, wave set-up, and depth-averaged
undertow velocity compared with the experimental data for periodic waves normally

incident on a plane beach presented by Cox and Kobayashi (1996). In the figure, full
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lines and dashed lines denote predictions by the present model with and without the
surface roller model, respectively. Wave set-up was computed from (3.10) but the
bottom shear stress was neglected. It will be shown in Chapter 4 that the effect of
the bottom shear stress on the wave set-up is negligibly small. Figure 3-4 shows the
same comparisons as those in Figure 3-3 but for periodic waves obliquely incident on
a plane beach with 1/20 slope. The experimental data shown in Figure 3-4 is reported
by Hamilton and Ebersole (2001).

As seen in Figures 3-3 and 3-4, agreement between measured and predicted wave
heights is excellent. From the comparison of wave set-up with and without the surface
roller effects it is seen that the surface roller delays the sudden increase of the wave
set-up right after the breaking point and it increases the wave set-up near the shore
line. This surface roller effect clearly improves the predictive skills for the wave set-up.
Similarly in the comparison of the undertow velocity, the surface roller significantly
increases the undertow inside the surf zone and the peak is shifted shoreward from the
breaking point. This feature cannot be explained solely from the wave volume flux
because the cross-shore distribution of wave heights of periodic waves always has its
peak at the breaking point. This observation also supports the necessity and validity

of the present surface roller model.

Figure 3-5 shows comparisons of significant wave heights, wave set-up, and the
depth-averaged undertow velocity for random waves normally incident on a plane
uniformly sloping beach reported by Okayasu and Katayama (1992). Similarly, Fig-
ure 3-6 shows the same comparisons as those in Figure 3-4 but for random waves
obliquely incident on a plane beach. The experimental data shown in Figure 3-6 are
also reported by Hamilton and Ebersole (2001). Since random wave heights gradu-
ally attenuate, the effect of the surface roller on the wave set-up is relatively small
comparing to the periodic waves shown in Figures 3-3 and 3-4. However, a similar
effect of the surface roller observed in Figures 3-3 and 3-4 are also seen in Figures 3-5
and 3-6 and improves the predictions of the wave set-up. Similarly, the surface roller
again increases dramatically the undertow predicted for waves alone, especially near

the shoreline, and results in excellent predictions.
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Figure 3-3: Comparisons of measured and predicted wave heights, wave set-up, and
depth-averaged undertow velocity for periodic waves on plane 1 on 35 sloping beach.
Measurements by Cox and Kobayashi (1996) (circles); Predictions with surface roller
(full line) and without (dashed line).
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Figure 3-4: Comparisons of measured and predicted wave heights, H,, wave set-up,
7, and depth-averaged return flow velocity, —U, for periodic waves obliquely incident
on plane 1 on 30 sloping beach. Measurements(Test 6A-N) Hamilton and Ebersole
(2001) (circles); Predictions with surface roller (full line) and without (dashed line).
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Figure 3-5: Comparisons of measured and predicted wave heights, wave set-up, and
depth-averaged undertow velocity for random waves on plane 1 on 20 sloping beach.
Measurements by Okayasu and Katayama (1992) (circles); Predictions with surface
roller (full line) and without (dashed line).
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Figure 3-6: Comparisons of measured and predicted wave heights, H,,s, wave set-up,
77, and depth-averaged return flow velocity, —U, for random waves obliquely incident
on plane 1 on 30 sloping beach. Measurements(Test 8A-E) Hamilton and Ebersole
(2001) (circles); Predictions with surface roller (full line) and without (dashed line).
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Finally, Figure 3-7 shows the same comparisons as Figure 3-5 but for the experi-
mental case when random waves are normally incident on a barred beach presented
by Okayasu and Katayama (1992). Since the present model is valid only for 5 > 0,
3 = 0 was substituted in the numerical application where 3 < 0. It is seen from the
figure that predicted significant wave heights agree very well with measurements even
where the water depth is increasing, i.e. 5 < 0. Similar to previous observations, in-
clusion of surface roller effects overall improves predictions of the wave set-up and the
undertow except predictions of the undertow around the bar crest. Since the model
without the surface roller effect already over-predicts the undertow and the contribu-
tion of the surface roller is relatively small around the bar, this over-prediction may

be mainly caused by the prediction of wave volume flux.

3.5 Summary and Further Implications

The wave model presented in Chapter 2 (Tajima and Madsen, 2002) was applied to
predictions of the near-shore wave field. The concept of the surface roller was then
introduced to improve predictions of depth-averaged undertow velocity and wave set-
up. Physical characteristics of the surface roller were determined as functions of the
surface roller energy, Fy,, and an energy balance equation, which is consistent with
the present wave model, was developed to capture the spatial evolution of the surface
roller energy. A simple extension of the model to random waves was also proposed.
The validity of the model was tested against experimental data for periodic and
random waves incident on plane uniformly sloping beaches with various slopes and
random waves incident on a barred beach. Through comparisons of the predicted
wave heights, wave set-up and depth-averaged undertow, excellent agreement verified
the predictive skills of the model. It should be emphasized that none of experimental
data compared with the present model was applied to calibrate the model coefficients.
The present model may also be extended to predictions of longshore momentum
forces and therefore longshore currents. For long straight beach conditions and as-

suming long linear wave theory, the momentum equation in the y-direction is deduced
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Figure 3-7: Comparisons of measured and predicted wave heights, wave set-up, and
depth-averaged undertow velocity for random waves on barred beach profile. Mea-

surements by Okayasu and Katayama (1992) (circles); Predictions with surface roller
(full line) and without (dashed line).
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from (3.5) to be
—ﬁE 0 si Q—QQE Osin 0 ~ (3.17)
5 cos 0 sin B st cos fsinf ~ T, )

where the first and the second terms of the left hand side of (3.17) are momentum
forces due to the wave and the surface roller, respectively. At the breaking point
for periodic waves, where the surface roller just starts to appear, the energy balance
equation (3.12) implies OF/0x ~ —20F,./dx for long waves. Therefore, the two
terms on the left hand side of (3.17) cancel and the total longshore momentum force
vanishes. This gives a continuous longshore current across the breaking point without

the necessity of introducing lateral mixing to achieve this feature.

Some distance inside the surf zone, on the other hand, surface roller energy, F.,,
starts to decrease and both wave and surface roller terms in the left hand side of (3.17)
becomes positive. Therefore, the surface roller increases the longshore momentum
force inside the surf zone. This feature shifts the peak of the longshore current
velocity shoreward. Ruessink et al. (2001) introduced the momentum force of the

surface roller and showed this feature in their numerical model application.

Svendsen (1984), assumed that the shear stress at the mean water level in the
shore-normal direction, 7, is determined as a sum of the time-averaged wave pressure

force and the surface roller momentum force,

10 0
Tex — —QgE — 2£E57s (318)

This resulted in a shore-ward leaning undertow velocity profile well inside the surf
zone, i.e. a positive gradient of the undertow velocity as mean water level is ap-
proached since both E and FE,, decrease in the wave propagation direction. In ad-
dition to this feature, our model is able to explain the sea-ward leaning undertow
typically observed near the breaking point. Our energy balance equation again im-
plies OF /0x ~ —20F, /Ox at the breaking point for periodic waves, and introducing
this condition in (3.18) shows the surface roller momentum force, which acts in the
sea-ward direction, to dominate. This results, therefore, in a sea-ward directed sur-

face shear stress, 7, acting at the mean water level and results in a sea-ward leaning
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undertow velocity profile as the mean water level is approached. These features will

be seen in the computational application of the present nearshore current model in

Chapter 4.
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Chapter 4

Nearshore current model

4.1 Introduction

The wave and surface roller models are now complete and readily applicable to the
sediment transport model. The last hydrodynamic features we require for the devel-
opment of the conceptual sediment transport model are the nearshore mean shear cur-
rent induced by broken waves. From the knowledge of mean current and near-bottom
wave orbital velocity, Madsen’s (1994) combined wave-current bottom boundary layer
model determines the bottom shear stress, which causes bedload sediment transport.
The bottom shear stress also acts to entrain bottom sediments into the water column
where turbulence dominated by wave breaking keeps a potentially large amount of
sediments suspended and available for transport by the near-shore mean current in
the seaward and longshore directions by the undertow and longshore current, respec-
tively.

A two-dimensional horizontal (2DH) nearshore mean current models, based on
the depth and time-averaged momentum equations (Longuett-Higgins, 1970; Phillips,
1977; Mei, 1989), are simple to apply and have therefore been widely used to evaluate
the nearshore mean circulation such as longshore and rip currents (e.g. Noda et al.,
1974; Ebersole and Darlymple, 1980; Wu and Liu, 1985). Under the long, straight
beach assumption, 2DH equations can be reduced to the one-dimensional alongshore

momentum equation (e.g. Longuett-Higgins, 1970; Thornton and Guza, 1986). The
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primary forcing that induces the nearshore mean current is determined from the
spatial variations of wave radiation stresses, which are separately obtained from a
wave model. A number of authors have pointed out the significant effect of the
surface roller momentum force that shifts the peak of the longshore current velocity
on a long, straight beach toward inside the surf zone (e.g., Kuriyama, 1994; Okayasu et
al., 1994; Lippmann, et al., 1995; Reniers et al., 1995; Osiecki and Dally, 1996; Reniers
and Battjes, 1997; and Ruessink et al., 2001). Because of the simple application of the
depth-averaged 2DH equations, however, the model can not appropriately evaluate
the udertow velocity inside the surf zone. On the long, straight beach, for example,
the mass conservation law requires the zero depth-integrated volume flux in the cross-
shore direction while there exists strong seaward return flow (undertow) under the
wave trough level that balances the wave-associated shoreward volume flux above
the trough level. This feature also results in unrealistic evaluations of the mean
current shear stress at the bottom because the 2DH model empirically determines
the bottom current shear stress from depth-averaged current velocity while the near-

bottom current velocity may differ significantly from depth-averaged current velocity.

In order to account for the vertical variation of the mean current velocity, the
quasi-three dimensional (Q-3D) nearshore mean current models have been developed
(De Vrind and Stive, 1987; Sanchez-Arcilla et al., 1990, 1992; Van Dongeren et al.,
1994; Kuroiwa et al., 1998). All these models except Kuroiwa et al. (1998), who
directly solved 3D Reynolds equations, are based on the depth and time-averaged
2DH momentum equations and the 1DV Reynolds equation is applied to determine
the vertical profiles of the mean current velocity. To reduce the computational cost,
all models assume certain explicit formulae to represent the velocity profiles. Pu-
trevu and Svendsen (1992) and Svendsen and Putrevu (1994) suggested that the
current-current and current-wave interactions play a significant role in characteriz-
ing the lateral mixing of nearshore mean current momentum. With the exception
of Van Dongeren et al.’s (1994) model (SHORECIRC), however, most Q-3D models
neglect these interactions and instead introduce empirical lateral dispersion terms

first introduced by Bowen (1969) to explain lateral mixing. SHORECIRC (Van Don-
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geren et al., 1994) accounted for the current-current and wave-current interactions
in its 2DH depth-integrated momentum equations and applicability of the model has
been tested by its developers (e.g. Svendsen et al., 1997; Van Dongren et al., 2003;
Svendsen et al., 2003). In order to simplify the 2DH depth-integrated momentum
equations, similar to the other models, SHORECIRC adopts quadratic velocity pro-
files, in which the vertical variations of the shear stress due to current-current and
wave-current interactions are neglected. Although the vertical variations of the mean
current velocity are determined, the model applies an empirical friction model based
on depth-averaged mean current velocity to determine the bottom shear stress, which

is critical in evaluation of the magnitude of the mean current velocity.

A number of numerical non-linear wave models such as Boussinesg-type models
have been extended to the predictions of broken waves and wave-induced near-shore
mean currents. Since the momentum equations in the Boussinesq-type models contain
both wave and mean current velocity components, these models implicitly account
for the current-curent and wave-current interactions, whose importance was discussed
in the previous paragraph. Most Boussinesq-type models, however, are based on
potential flow assumptions and additional modeling is called for to evaluate the effects
of turbulent fluctuations, which determine vertical profiles of near-shore mean shear
currents. Turbulent fluctuations dominant around the surf zone are also essential
to characterize the concentration distribution of suspended sediments. Watanabe
and Elnaggar (2000) combined the fully non-linear Boussinesq equations and 1DV
Reynolds momentum equations and developed a numerical scheme, which accounts
for time-varying shear flows. In their model, vertical distributions of the turbulent
intensity induced by wave breaking are determined by use of the k-¢ equations. The
model requires additional numerical iterations to solve the 1DV Reynolds and k-
€ equations at every time step for which the Boussinesq equations are numerically

solved.

Introducing the volume of fluid (VOF) method, originally developed by Hirt and
Nichols (1981), further complex numerical models, which directly solve Reynolds
equations for free-surface water flow, have been developed (e.g., RIPPLE, Kothe
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et al., 1991; and CADMAS-SURF, Coastal Development Institute of Japan, 2001).
Since the VOF method enables the model to treat arbitrary free surface conditions,
numerical schemes in conjunction with the VOF method have been applied to more
complicated problems, such as breaking waves with over-hanging surface profiles,
swash zone hydrodynamics, and waves attacking breakwaters with complex shape,
such as caissons with perforated-walls (e.g., Lin and Liu, 1998; Puleo et al., 2002;
Takahashi et al., 2002). Lin and Liu (1998) modified RIPPLE, developed by Kothe
et al., (1991), and introduced k-¢ equations to solve for turbulent kinetic energy, k,
and turbulence dissipation rate, €, mainly caused by broken waves energy dissipa-
tion. Lin and Liu (1998) applied the model to the two-dimensional experiment for
periodic waves normally incident on a plane beach and showed good agreements of
predicted and measured free-surface elevations, velocity fields, and turbulent kinetic
energy at arbitrary elevations. However, the massive computational load required by
these complex models, may limit these models’ utility for practical applications. For
example, a practical model for predictions of beach topography changes must be effi-
cient and flexible so that it can accommodate iterative computations for time-varying

and hence arbitrary beach profiles.

In this study, therefore, we develop a 2DH-based Q-3D nearshore mean current
model, which can be accommodated to the practical applications. We first summa-
rize the external momentum forcing and volume fluxes obtained from our wave and
surface roller models. These characteristics are introduced in the depth-integrated
2DH mean momentum equations to solve near-shore mean shear currents. Similar
to Sanchez-Arcilla et al.’s (1990, 1992) approach, the water column is separated at
the wave trough level and 2DH momentum equations are solved in two layers, one
over the entire depth and the other above the trough level. Similar to Svendsen and
Putrevu (1994), we account for the current-current and wave-current interaction ef-
fects in the 2DH momentum equations integrated over the entire depth. The present
model, however, differs from Svendsen and Putrevu’s (1994) model in that these in-
teraction effects are also accounted for in the upper-layer 2DH momentum equations

integrated above the trough level. A modified version of the wave-current bottom
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boundary layer model presented by Madsen (1994) is then introduced to specify bot-
tom boundary conditions for the near-shore mean current model. Simple expressions
for the vertical distributions of the turbulent eddy viscosity allow us to obtain ana-
lytical solutions for vertical profiles of mean shear currents thereby enhancing model
efficiency. The proposed turbulent eddy viscosity model may also be applied to evalu-
ate the vertical concentration profiles of suspended sediments. Since the model deals
with time-averaged variables and depth-integrated momentum equations, the entire
model retains the computational efficiency and flexibility for practical applications.
The waves may be periodic or random, the beach profile may be plane or barred, and
the arbitrary bottom roughness must be specified. Finally, validity of the model is
examined through comparison with a number of experimental results, which were not

used for model calibrations.

4.2 Wave Model

We apply the wave model developed in Chapter 2. The present wave model first deter-
mines the equivalent linear wave characteristics through an energy balance equation

from linear wave theory,

V (ECgﬁ) — _Db
K
= -G, (B-B,) (4.)

as introduced in Section 2.3, (2.21). D, is a dissipation rate of the broken wave energy,
which will be applied to the turbulent eddy viscosity model. The proportionality

constant for broken wave energy dissipation, Kj, is determined in (2.24) as

2 h 2t
5 7 Oh _byjtanf (4.2)

Ky, = —2 -
T2 20 2922

with
Vo =" + Atan 3 = 0.3 + 4tan 3 (4.3)
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from (2.25). Non-linear wave characteristics, such as near-bottom wave orbital ve-
locity profiles, are then restored from the equivalent linear wave characteristics. The
“height” of the non-linear near-bottom wave orbital velocity is applied in a combined
wave-current bottom boundary layer model (Madsen, 1994) to predict bottom bound-
ary conditions. For random waves, however, we use rms near-bottom velocity height
based on linear theory to evaluate the bottom boundary conditions since Madsen’s
(1994) model for random waves are based on spectral, i.e. linear wave theory. Ex-
cellent predictive skills of the model for the rms near-bottom wave orbital velocity
height were shown in Figure 2-20. It should be pointed out that the present broken
wave model was developed so that the predicted wave energy inside the surf zone
is consistent with that of observed non-linear waves, while most existing models are
calibrated in terms of measured broken wave heights. Since observed, i.e. non-linear,
wave heights are usually larger than the equivalent linear wave heights, wave energy
and energy flux may be over-predicted if one were to use observed non-linear wave
heights in expressions based on linear wave theory. The over-prediction of wave en-
ergy and energy flux results in over-estimation of wave momentum forces, which may
significantly affect predictions of wave-induced near-shore mean currents and wave

set-up.

4.2.1 Volume Flux and Momentum Forcings

Wave volume flux and momentum forcings are defined based on the equivalent linear
wave characteristics obtained from the present wave model. Components of the wave

volume flux above the trough level, (quy, quy) are determined from linear theory by

h+n

(Guas Quy) = / (@,0)dz = % (cosf,sinb) (4.4)

h—H/2 P

where % and v are wave orbital velocity components in x and y-directions, respectively.
According to Tajima (2001), cross-shore volume flux due to waves, g, obtained in
this manner agrees reasonably well with numerical predictions by the Stream Function

Theory, i.e. non-linear wave theory, except very near the breaking point where H/h
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is very large.
Wave radiation stress tensors, Sy, and Sy, are also expressed in terms of the wave

energy, e.g. (Mei, 1989),

h+n
Spw = / p+ pidz = 20
0

Cy N 1
= B4 (14 cos?6) — ﬂ (4.5)
h+n
0
EC, .
EWokia 20 (4.6)

Note that all these integrated wave characteristics are expressed in terms of wave
energy. Since the broken wave model was developed so that the predicted wave energy
flux inside the surf zone agrees with that of observed non-linear waves, predicted wave
forcings and volume fluxes, all of which are expressed in terms of wave energy, may

be considered to be consistent with actual non-linear waves.

4.2.2 Model Extension to Random Waves

Since the model is governed by a simple energy conservation equation based on linear
wave theory, the model is readily extended to random wave conditions. Local mean
wave energy, E = pgH? /8 is determined from energy balance equation for random

waves, (2.27), and both volume fluxes and the momentum forcings are determined

from (4.4), (4.5) and (4.6) by replacing H by H,.ps for a random sea.

4.3 Surface Roller Model

In order to explain the increase of return flow velocity observed in the surf zone,
relative to the value suggested by balancing the purely wave-associated volume flux
given by (4.4), we developed a model for prediction of surface roller evolution in the
surf zone in Chapter 3. The surface roller model is based on the energy balance

equation that is consistent with the proposed broken wave energy dissipation model.
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Validity of the model was indirectly examined by comparing predicted and measured
volume fluxes as well as wave set-up, which is also affected by momentum forcings
of the surface roller. It should be stressed that the surface roller model, just as the
wave model, is based on simple energy balance equations that allow us to keep the

model flexible and computationally efficient.

4.3.1 Volume Fluxes and Momentum Forcings

Under the assumption that the surface roller moves with the wave phase velocity, C,

average surface roller energy per unit area, F,,, is expressed as

105,C?  pSyC

Esr =
L 2T

(4.7)

with S, denoting the area of the surface roller. Evolution of the surface roller energy

is determined from energy balance equation (3.12),

1 KST
5V (BCyii) + V (B Ori) = == B, C (4.8)

As discussed in Section 3.1.3, the present model differs from the Dally and Brown
(1995) model in that we assume only the loss of potential energy, which is a half of
the total wave energy loss in linear theory, is transferred from the broken waves to the
surface roller. The proportionality constant, K,,, is taken to be equal to Kj and, in
contrast to Dally and Brown’s (1995) model, K, is a function of the effective beach
slope, (. Figure 3-2 demonstrated the improved predictive skills of the present model

for evaluations of the slope-dependent return flow volume fluxes.

Based on the mean surface roller energy defined in (4.7), mean volume fluxes of

the surface roller in x and y-directions, ¢s, and g¢s,, are expressed as

SST
T

2K,
pC

(cosf,sinf) =

(qsrm, qsry) - (COS 9, Sin 8) (49)

Similarly, average momentum fluxes due to the surface roller, R,, and R,, are ex-
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pressed as

S, C? cos? 0

Rew = p%zQEWCOSQQ (4.10)
S, C? cos 0'sin 0

Rey = Z ZOS S~ B,sin20 (4.11)

Under the long, straight beach assumption, in which total volume flux in the cross-
shore direction is zero from mass conservation, the depth-averaged return flow veloc-

ity, U, is determined by

& qwﬂ: _I_ qSTCE E _I_ 2E57’
U=— = — 0 4.12
h Ch Ccos (4.12)

and wave set-up due to broken waves and surface rollers is given by

op 0

where the wave radiation stress, Sy, is defined by (4.5) and 7., is a mean bottom
current shear stress. In general 7., which is determined later in the development
of the near-shore mean current model, is of negligible importance in the mean force
balance expressed by (4.13). Combining the energy balance equation (3.12) with the
broken wave energy dissipation model for random waves, (2.27), the surface roller
model is also readily extended to random waves. Mean surface roller energy deter-
mined in this manner is then applied to evaluate momentum and volume fluxes for

use in the near-shore mean shear current model.

4.4 Near-Shore Mean Current Model

Wave and surface roller models are now available for the evaluation of external forcings
in the near-shore mean current model. Figure 4-1 illustrates the present near-shore
current model. To obtain the governing equations for the mean flow, we split the
water column at the wave trough level and develop the mean shear current model for

the region below the trough level, where we are within water at all times. In this
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Figure 4-1: Illustration of the near-shore mean current model

manner, we can safely apply time-averaged Reynolds momentum equations for model
construction. Above the trough level, we assume that the mean current velocity is
vertically uniform and its magnitude is represented by the current velocity at the
trough level determined from the mean current model below the trough level. Under
this assumption, we define a mean shear stress acting at the trough level, which is
applied as a forcing term in the governing momentum equation under the trough

level.

4.4.1 Governing Equation

Below the trough level, vertical profiles of the near-shore mean shear currents are

determined from .
aU 7?05 - 7?cb
A P I 414
Jaz B T, Tep + htr 2z ( )
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where 14 is a turbulent eddy viscosity, U = (U, V) is the mean current velocity, z is
vertical coordinate-axis with z = 0 at the bottom, 7. = (7., 7.,) is the mean current
shear stress vector, and hy,, = h — H/2 is a “trough water depth”, i.e. the elevation
of the wave trough level above the bed with h = hg + 77 denoting the mean water
depth. As seen in (4.14), we assume that 7, varies linearly in the vertical z-direction so
that 7, may be simply expressed in terms of bottom and trough shear stress vectors,
Teo = (Tebar, Tevy) and Tos = (Tesw, Tesy), respectively (see Figure 4-1). Note that the
vertical linear distribution of the shear stress is true for spatially slowly varying flows
under the linear long-wave approximation and therefore is a reasonable assumption
in the near-shore field. This linear-approximation of the shear stress and a simple
turbulent eddy viscosity model enable us to obtain analytical expressions for the
vertical profiles of the mean shear current. This feature contributes significantly to
the computational efficiency of our model. Determination of the unknown variables

in (4.14), v, T.s and T,p is presented in the following sections.

4.4.2 Turbulent Eddy Viscosity Model

Figure 4-2 illustrates the feature of the present turbulent eddy viscosity model. For a
simple shear current, in which a uniform shear stress is acting at the bottom boundary,

a linear turbulent eddy viscosity is often applied in the vicinity of the bottom, i.e.
Vp = Ry 2 (4.15)

where k = 0.4 is Von-Karman’s constant and .. = 4/|7.| /p 1s the shear velocity
at the bottom. This eddy viscosity is shown by the thin line in Figure 4-2. For
the present wave-induced near-shore shear current model, however, this simple linear
eddy viscosity may not be sufficient because the current shear stress is assumed to
vary in depth and the magnitude of the shear stress near the water surface may be
much larger than that near the bottom because of broken waves and surface rollers.
Besides, we should also expect significant excess turbulent fluctuations due to broken

waves in the water column within the surf zone. In order to take these additional

111



turbulent fluctuations into account, we define the following turbulent eddy viscosity

shown as a dotted line in Figure 4-2
(4.16)

where u,s is a surface shear velocity. Note that this expression is identical to (4.15)
if one replaces the constant shear velocity u,. by u*s\/z/Tm i.e. corresponding to
a linearly increasing mean shear stress. This form of the eddy viscosity model is
consistent with Deigaard et al.’s (1991) numerical solutions for broken waves, in

which the k-equation was solved directly. We define the surface shear velocity, u,s,

Ues =/ |Tes /P + ulp (4.17)

where |T.s| = /72, + 72, is associated with the shear stress acting at the trough level

1

and ul; = M (?—;)g is the characteristic turbulent velocity due to the breaking wave

as

energy dissipation, Dy, originally proposed by Battjes (1975), and here modified by a
factor of 1/2 since only the kinetic wave energy dissipation is assumed to take place
in the water column. The other 1/2 of dissipated wave energy, i.e. the dissipated
potential wave energy, is assumed to be transferred into the surface roller as discussed
in the context of surface roller modeling in Section 3.1.3. The empirical coefficient,
M, is taken as M = k = 0.4, which is within the range suggested by Battjes (1975).

Finally, we define the complete turbulent eddy viscosity model as the maximum of

(4.15) or (4.16),

V = maX(/{u*cz, KlUxg? ﬁ)
v B

Kl 2 (6 <2< zp)
- (4.18)

Ks?y )7 (2m < 2 < D)

as illustrated by a heavy line in Figure 4-2. In (4.18) z,, = hyu?,/u?, and § is a
wave bottom boundary layer thickness, which is determined from Madsen’s (1994)

modified wave-current bottom boundary layer model. Extensive studies to investigate
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Figure 4-2: Turbulent Eddy Viscosity Model

the turbulence inside the surf zone are still ongoing and therefore the modeling of the

turbulent eddy viscosity due to broken waves should be one of future modifications for

the present model. For example, Lin and Liu (1998) applied VOF method (Hirt and

Nichols, 1981) to treat the free-surface fluid boundary conditions for waves inside the

surf zone and numerically solved 3D Reynolds equations and k-¢ closures to predict

surf zone hydrodynamic characteristics. They compared predicted turbulent eddy

viscosity

with experimental measurements obtained by Ting and Kirby (1996) and

suggested that the vertical profile of the turbulent eddy viscosity well inside the surf

zone may be represented by a parabolic curve (o 2V 1) and magnitude of the turbulent

eddy viscosity may be scaled by a product of water depth and wave celerity, hC.
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4.4.3 Bottom Boundary Condition

To obtain the complete solutions of (4.14), we need to specify the bottom boundary
condition. Figure 4-3 illustrates the modified wave-current bottom boundary layer
model proposed by Madsen (1994). As seen in Figure 4-3, Madsen’s (1994) modified
wave-current bottom boundary layer model determines the mean current velocity at

the outer edge of the wave bottom boundary layer, z = 6 as

B} 7 5
Us = (Us, V) = —2—In (—) (4.19)

KPUsm 20

where z9 = kn/30 with ky denoting the equivalent Nikuradse (1933) sand grain
roughness of the bottom and u,,, is the maximum combined wave-current bottom

shear velocity, defined by

W = Ton/p = CpTum/p (4.20)
with
Teb Teb 2
C, = 14 2 |cos ¢yl + <—> (4.21)
Twm Twm
1
Twm = §pfcwugm (4.22)

To = \/Tow T Ty (4.23)

and ¢,,. denoting the angle between wave and current bottom shear stress as see in

Figure 4-3. The boundary layer thickness, ¢, is determined from

Ky,

6=A

(4.24)

w

with
A = exp [2.96 (CpuApm /lon) > — 1.43] (4.25)
It is noted here that A given by (4.25), which was obtained by Madsen and Salles

(1998), represents the modification of Madsen’s (1994) combined wave-current bottom

boundary layer model, in which A was taken to be constant. In the expression for the
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maximum wave bottom shear stress, (4.22), f.,, is the combined wave-current friction
factor, Uy, is the amplitude of the near-bottom wave orbital velocity obtained from the
wave model and Ay, = Uy, /w is the corresponding bottom excursion amplitude. For
periodic waves uy,, is determined from the predicted non-linear near bottom velocity
height, i.e. Upm = Upy/2. For random waves, we apply the rms velocity height of the
equivalent linear near-bottom wave velocity to determine wyy,, i.e. Upm = Up s /2.
Excellent predictive skills of the present wave model for Uy, and Uy, s were seen in
Figures 2-18 through 2-22. According to Madsen (1994), exact solutions of f., can
be approximated by the following explicit formulae as a function of the dimensionless

parameter, X = C, A, /kn.

Cexp (7.02X 007 —882) 0.2 <X < 10?
few = max (4.26)

Cpexp (5.61X %19 —730) 10?2 < X

The major advantage gained from the adoption of Madsen’s (1994) bottom boundary
layer model is that the bottom boundary condition is specified from the bottom
roughness, kx, which is a physically relevant quantity, e.g. comparable to the diameter
of the bottom sand grains for fixed-bed conditions. The model is further applicable
to movable bed conditions, such as rippled or sheet flow beds, by introducing the
equivalent bottom roughness from empirically determined relationships for movable

bed roughness.

4.4.4 Solution for Mean Current Profiles

Finally, complete analytical solutions for our mean current profiles are obtained by
solving (4.14) with 14 given by (4.18) and satisfying the bottom boundary conditions

given by (4.19). The solution for the vertical profile of the mean current velocity

115



—— -

CURRENT WAVE L
b = Upyy, COS Wi N

igure 4- odified wave-current bottom boundary layer model proposed by adsen

(1994)

vector, U, may be expressed as

Ajln 2 (20 < 2<9)
, Ts4+ AglnZ + A28 (§< 2< 2,
U=, " 72T e (625 2m) (4.27)
Uzm + A4 (\/E RV Zm) (Zm S Z S htr)
i (her <2 < h+7)
Wlth t t
Ay a
A2 _cb
- e (4.28)
A3 csf*zb
8 r

where U , U . and U are mean current velocity vectors at z = § (given by (4.19)),

2z =2 and 2z =h , respectively.

Since the momentum force balances proposed in the following sections are ex-
pressed as depth-integrated momentum equations, we also integrate (4.27) to define
relationships among 7 , T , and depth-integrated mean current velocities. Integration

of (4.27) from the bottom to the trough level yields
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1
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2ht7’ htr Zm
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3U*5 ( + htr ) ( )
and

—

ht'r
G = (oo ) = | Uz = hey (U, Vo) (4.32)

is the mean volume flux vector below the trough level with U, and 1}, representing the
depth-averaged mean current velocity below the trough level in x and y directions,
respectively.

For numerical application of the model, (4.29) is used to evaluate the bottom
shear stress, T., = (Topw, Tery) @s a function of 7., and ¢,. Unknown variables, 7., and

Jy, are determined through the following integrated momentum equations.

4.4.5 Integrated Momentum Equations

Integrated momentum equations above the trough level determine the relationship
for mean trough shear stress, 7.,, and mean current velocities above the trough level,
U,. General relationships are derived in Appendix A. Under the long, straight beach
condition, i.e. for 8/0y = 0, momentum equations integrated above the trough level

yield cross-shore (z) direction shear stress at trough level, z = hy,

Tese = Fshp:c + Fsm:c + st:c + Fsm:
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‘I'stm:c _I_ FSTmSE _I_ FSU’LUSC (433)

where Finpe, Fsmzs Fowsy, Fsray Fowmay, Fsrma, and Fsy,e are forces due to hydro-
static pressure, mean current components, waves, rollers, wave-current interactions,
roller-current interactions, and the vertical mean momentum transfer, respectively.

Neglecting atmospheric pressure and wind shear stress contributions, we have from

(A.22)

on
Fonpe = —Pgas (4.34)
ouU? 5 O
Fonae = —pa pe _PUsg (4.35)
oo 0 (E) _ pad(ag — i)
swr or \ 2 2 Ox
Plra oy 07
0
F = —p— 4.
0
F = —p— (2 4.
0
F = —p— 4.
srmx Paaj (qSTFEUS) ( 39)
Fsuw:c = PUpr Wiy

_ 8qsm ~ aqwm
N p(US Ox + s ox )

/\2 —
o, U\ 0(7—a)
+ (US + ) — (4.40)

where a = H/2 is the amplitude of the equivalent linear wave, (us, w;) is the wave
orbital velocity amplitudes at the surface obtained from linear theory, ¢., = que +
qsre + aUs is the total mean volume flux above the trough level. Similarly we have in

the shore-parallel (y) direction, by use of (A.22) with 9/9y = 0,

Tesy = Fsmy + sty + Fsry

+stmy + Fs’f’my + Fsva + Fsvy (441)
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where

Fsmy
sty
Fsry
stmy

Fsry

Fsva

Fsvy

where the last term, fy,,, a

_ —paag;% - pUSVS% (4.42)
- il o
- —p%Rmy (4.44)
= —pa% (qua Vs + quyUs) (4.45)
= () (4.46)
= Ul
— o 05

+ (USV; + ”;) 0 (ﬁa; ) (4.47)
- o
(0 25) s

turbulent viscous force, is expressed through use of

(A.38). The mean momentum fluxes due to the surface roller, R,, and R, in (4.37)

and (4.44) were determined in (4.10) and (4.11), respectively.

Similarly, with reference to Appendix A for details, the integrated momentum

equations over the entire depth (A.31), omitting atmospheric effects and taking

/0y = 0, result in

Tebe — thp:c + Fbm:c + Fbw:c + Fsm: + stm:c + Fsrm:c (449)
Teby = Fbmy + Fbwy + Fsry + stmy + Fsrmy
+Fbvy (450)
with
on
Fopa pgha—z (4.51)
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Fymw = —p% (a2 + gl (4.52)
Fuoe = ~See (4.53)
. A RRT (454)
Fruy = —a%smy (4.55)
Froy = /Oh %dz

e () o2 () s

The wave radiation stress tensors, Sy, and Sy in (4.53) and (4.55) are given by (4.5)

and (4.6), respectively.

4.5 Model Test

Predictive performance of the near-shore current model is examined through com-
parisons of predicted and measured mean current velocity. We first examine the
predictive skills for undertow velocity profiles by comparing model predictions with
measurements for periodic or random waves normally incident on uniform plane or
barred beaches. Predictions of the longshore current velocity profiles are then com-
pared with measurements for periodic or random waves obliquely incident on plane
straight beaches. Finally, applicability of the present bottom boundary layer model is
also verified by comparing predicted depth-averaged longshore current velocity with
experimental data, in which identical periodic waves are obliquely incident on a long,
straight beach with different bottom roughness. Details on the numerical scheme used
in the implementation of the theoretical model for near-shore currents are presented

in Appendix B.

4.5.1 Undertow Velocity Profiles

Figure 4-4 shows the predicted wave height, mean water level and vertical profiles

of the undertow velocity compared with the measurements reported by Cox and
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Figure 4-4: Comparison of measured and predicted wave heights, H,, wave set-up, 7,
and vertical profiles of undertow velocity for periodic waves on plane 1 on 35 sloping
beach with bottom roughness ky = lmm. Measurements by Cox and Kobayashi
(1996) (full circles indicate measurements below and open circles above trough level)
and predictions (full line). Dotted line in set-up is the prediction neglecting the
bottom shear stress and mean momentum forces.

Kobayashi (1996), in which periodic waves are normally incident on a uniform plane
beach with D = 1lmm sand grains glued to the surface, i.e. ky is taken to be
D = 1mm. In the comparisons of wave set-up, the full line is the predicted wave
set-up determined from the momentum equation (4.49) while the dashed line is the
prediction obtained from (3.10) without 7.,. From the comparison of these two
predictions, the effect of 7., and current momentum forces in (4.49) are seen to
be negligibly small. This suggests that excellent results for wave set-up may be
obtained simply from the wave and surface roller model, (3.10), as shown in Figures

3-3, through 3-7, i.e. without having to solve the full set of equations.

This negligible effect of the bottom shear stress for prediction of the wave set-up is
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more clearly illustrated in Figure 4-5, which compares the forcing terms of the cross-
shore momentum equation for the entire depth, (4.49). Figure 4-5 (a) compares the
wave radiation stress forcing, Fyy, (thin full line), the surface roller force, Fy,, (thin
dashed line), and the hydrostatic pressure forcing due to wave setup, Fipp, (heavy
dotted line). A heavy full line in the same figure indicates a sum of these three forcing
terms. In these figures, the positive force (in N/m?) acts in the shoreward direction
while the negative force acts in the seaward direction. We hereafter refer to the forces
due to waves and rollers as “external forces” because these forces, such as Fj,, and
.., are not associated with mean current velocity and are externally obtained from
the wave and surface roller models developed in Chapters 2 and 3, respectively. As
seen in Figure 4-5 (a), the hydrostatic pressure force, Fypp,, counteracts the other
two external forces, Fy,, and Fy,., and the sum of these three forces becomes very
small compared to any of the three components. Figure 4-5 (b) shows “mean-current-
associated” forcing terms due to the mean current advection, Fyp, (thin full line), the
interaction of waves and mean currents, Fym, (thin dotted line), and the interaction
of surface rollers and mean currents, Fi.,, (thin dashed line). Similar to Figure
4-5 (a), the heavy full line is a “net mean-current-associated force”, i.e. the sum
of these three mean-current associated forcing terms. The magnitude of these mean-
current associated forcing terms, which is at most 2(N/m?), is smaller than the former
external forcings, Fyue, Fyra, and Fip,, some of which are larger than 10(/N/m?) near
the breaking point. Similar to the external forcing and hydrostatic pressure terms,
mean-current-associated forces also balance each other and the sum of these three
forces becomes very small compared to either Fynu, Fawmas OF Fspme. Figure 4-5 (c)
shows the sum of external forces and the hydrostatic pressure force, the net mean-
current-associated force, and the sum of these two, i.e. the total cross-shore forcing
that corresponds to the bottom shear stress, 7.;,. Note that the force-scale of the
last figure is much smaller than in the first figures and the magnitude of 7., is about
50 times smaller than the hydrostatic pressure force, Fipye. This feature clearly
supports the negligible effect of the bottom shear stress for prediction of wave set-up.

Similar negligible effects of the bottom shear stress for prediction of wave setup will
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be illustrated in subsequent comparisons for different experimental cases. Inside the
surf zone, —7 < X (m), the net mean-current-associated force, Fyny + Fywma + Fsrmas
(thin full line) acts in the shoreward direction (positive force) and slightly reduces
the seaward bottom shear stress, 7., (heavy full line). However, the magnitude of
the net mean-current-associated force is much smaller than the sum of external and
hydrostatic pressure forces, Fiyy + Firy + Fipe (thin dashed line) and 7., becomes
nearly equal to Fpys + Ferg + Fipe. This feature supports the negligible effect of
the advective forces in the cross-shore momentum equations, which is assumed by a

number of existing undertow velocity models, such as those by Svendsen (1984), Stive

and Wind (1986), Okayasu et al. (1990), and Deigaard, et al. (1991).

Figure 4-6 compares the forcing terms of the cross-shore momentum equation
above the wave trough level (4.33). Similar to Figure 4-5, Figure 4-6 (a) compares
external forcings due to waves, I, surface rollers, F},,, and the hydrostatic pressure
force, Flpps, and (b) shows the mean-current-associated forcing terms, Fipna, Fswmas
Fome, and Flye. Heavy full lines in these figures denote the sum of the components
in each figure. Figure 4-6 (c¢) compares the sum of external and hydrostatic pressure
forces, the net mean-current-associated force, and the sum of these two, i.e. the total
shear stress at the trough, 7.s,. Outside the surf zone, the wave energy increases as
waves shoal up to the breaking point (X ~ —7(m)) and the increasing wave energy
yields Fl,, acting in the seaward direction, i.e. Fj,, < 0 outside the surf zone as
seen in Figure 4-6 (a). Fj,, is zero outside the surf zone because no surface rollers
are generated. I, acts in the shoreward direction due to the wave set-down but is
smaller than | Fy,;|. The net mean-current-associated force above the trough also acts
in the shoreward direction but the magnitude is relatively small compared to |Fyyql-
As a result, seaward acting Fy,, predominates the other forces and the total forcing,
Tesa, also acts in the seaward direction outside the surf zone (see the heavy line in
Figure 4-6 (c)). The seaward-acting 7.5, yields a negative gradient of the undertow
velocity as trough level is approached, i.e., the undertow becomes seaward-leaning

near the surface. This feature is clearly observed in the two velocity profiles prior to

breaking (X < —7(m)) in Figure 4-4.
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Figure 4-5: Comparisons of the cross-shore forcing terms in (4.49) for Cox and
Kobayashi’s (1996) experiment: (a) external forcings and hydrostatic pressure forces;
(b) mean-current-associated forces; (c) total forces.
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Figure 4-6: Comparisons of the cross-shore forcing terms in (4.33) for Cox and
Kobayashi’s (1996) experiment: (a) external forcings and hydrostatic pressure forces;
(b) mean-current-associated forces; (c) total forces.
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In the outer surf zone, abrupt decay of the wave energy after the breaking point
causes a large Fl,, and Fjy,, acting in the shoreward direction while the growing
surface roller yields the seaward acting F,,,. Because Fj,,, is larger than the seaward
acting Fy,, just after the breaking point, as seen in Figure 4-5 (a), the mean water
level rises towards the shore (wave set-up) and the resulting hydrostatic pressure
forces, Fyppy and Fypp,, act in the seaward direction to compensate the shoreward
force due to Fjy:. Above the trough level, in contrast to the force balance for the
entire depth, the sum of seaward acting Fi,, and Fipp, is larger than the shoreward
acting Fj,, and the sum of these three forces, Iy, + sy + Fonps, acts in the seaward
direction. As broken waves propagate further inside the surf zone, the surface roller
initially grows causing the dissipation of energy from the surface roller to gradually
dominate the broken wave potential energy transferred to the surface roller. Thus, the
seaward acting Fj,, decreases and eventually starts to act in the shoreward direction.
In this transition region, the seaward acting 7., also decreases and eventually turns
to act in the shoreward direction. This feature is observed in the third undertow
velocity profile in Figure 4-4, in which the undertow velocity is nearly uniform in the

z-direction because 7.y, is relatively small in this vicinity (X (m) ~ —6).

Well inside the surf zone, both Fy,, and Fj,, act in the shoreward direction and
yield a relatively strong 7.s; acting in the shoreward direction. As seen in the last
three velocity profiles near the shore line in Figure 4-4, undertow velocity profiles
become shoreward-leaning near the surface. The model successfully explains these
physical features and excellent agreement with measurements is obtained inside the
surf zone. Similar to the comparisons in Figure 4-5, the mean-current-associated

forces have little effect on 7.4, although it slightly smooths 7., (see Figure 4-6 (c)).

The model tends to over-predict the seaward-leaning undertow profile outside the
surf zone. Since the total volume flux of the return flow is fixed, i.e. governed by the
predetermined shoreward volume flux due to waves, the over-prediction of the sea-
ward current velocity near the trough causes under-prediction of the seaward current
velocity near the bottom. In the first two velocity profiles outside the surf zone, near-

bottom mean current velocity even goes shoreward to compensate the over-predicted
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seaward current velocity near the trough. This over-prediction of the seaward-leaning
profiles is mainly because of the prediction of a very low turbulent eddy viscosity
outside the surf zone since, for periodic waves, breaking does not contribute to any
turbulence seaward of the breaking point. Thus, the model assumes zero wave break-
ing generated turbulence outside the surf zone although breaking wave turbulent
energy, in reality, may be advected from within the surf zone beyond the breaking
point by the undertow itself. As seen in Figures 4-5 and 4-6, dramatic changes of
Fone and Fjpp beyond the wave breaking point indicate that our assumption of the
gently varying mean current velocity in the horizontal direction is violated. If the
mean-current associated forces, such as Fl,,, or Iy, are comparable to other forces,
the assumption of linearly varying shear stress in the vertical direction is also violated
because vertically varying mean current velocity profiles do not yield linearly vary-
ing advection forces. For random waves, which are more important from a practical
perspective, this over-prediction do not occur because a certain fraction of waves are
always breaking under the model assumption and yield a certain amount of broken

wave turbulence and hence increased eddy viscosity at all locations.

Figures 4-7, 4-8, and 4-9 show the same comparisons as those of Figures 4-4, 4-
5, and 4-6, respectively, but for the experimental Case 2 reported by Okayasu and
Katayama (1992), in which random waves are normally incident on a uniform plane 1
on 20 sloping smooth concrete beach (ky is taken according to smooth turbulent flow,
le. ky = 3.3V/Uyy). Note that the breaking rms wave height (H,, s 2 6cm) in this
experiment is smaller than half of the predicted equivalent linear breaking wave height
in Cox and Kobayashi’s (1996) experiment (H, ~ 13c¢m). Since the magnitude of the
wave forcing is roughly proportional to H?, the predicted forcings in this experiment
are therefore about four times smaller than those in Cox and Kobayashi’s (1996)
experiment. In contrast to the periodic wave case, shown in Figures 4-5 and 4-6,
all the momentum forces vary gently in the cross-shore direction and, as discussed
previously, excellent agreement of the undertow profiles are obtained even outside
the surf zone. Similar to the periodic wave case, the mean-current-associated forces

shown in Figures 4-8 and 4-9 are smaller than the external forces and have minor
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Figure 4-7: Comparison of measured and predicted wave heights, H,,,s, wave set-up,
7, and vertical profiles of undertow velocity for random waves on plane 1 on 20 sloping
beach with smooth concrete bed. Measurements(Case 2) by Okayasu and Katayama
(1992) (full circles indicate measurements below and open circles above trough level)
and predictions (full line). Dotted line in set-up is the prediction neglecting the
bottom shear stress and mean momentum forces.

effects on the total shear stresses, 7,4, and T.,.

Figure 4-10 shows the same comparisons as Figure 4-7 but for the experimental
Case 3 presented by Okayasu and Katayama (1992), in which random waves are nor-
mally incident on a barred beach. As seen in the Figure, the wave model successfully
predicts the following observational features: the first wave breaking in front of the
bar-crest; wave recovery over the bar-trough; and the second wave breaking near
the shore-line. Similar to other comparisons, excellent agreement of predicted and
measured wave set-up verifies the total forcing balance in the cross-shore direction.
Although the model slightly over-predicts the magnitude of the undertow velocity,

characteristic features of the predicted undertow profiles, such as seaward and shore-
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Figure 4-8: Comparisons of the cross-shore forcing terms in (4.49) for Okayasu and
Katayama’s (1992) experiment (Case 2): (a) external forcings and hydrostatic pres-
sure forces; (b) mean-current-associated forces; (c) total forces.
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Figure 4-9: Comparisons of the cross-shore forcing terms in (4.33) for Okayasu and
Katayama’s (1992) experiment: (a) external forcings and hydrostatic pressure forces;
(b) mean-current-associated forces; (c) total forces.
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Figure 4-10: Comparison of measured and predicted wave heights, H,.,s, wave set-
up, 7, and vertical profiles of undertow velocity for random waves on barred beach
with smooth concrete bed. Measurements(Case 3) by Okayasu and Katayama (1992)
(full circles indicate measurements below and open circles above trough level) and
predictions (full line). Dotted line in set-up is the prediction neglecting the bottom
shear stress and mean momentum forces.

ward leanings, agree very well with measurements. This generally excellent agreement
of predicted undertow velocity profiles with measurements supports the validity of the
predicted shear stress distributions, i.e., the modeled momentum balance around the

surf zone.

4.5.2 Longshore Current Profiles

Applicability of the model for prediction of longshore currents is first examined
through comparison with the unique experimental data set obtained by the U.S.
Army Corps of Engineers in their Longshore Sediment Transport Facility (LSTF). In
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the LSTF, uniform longshore currents on a straight beach are achieved by multiple
pumps installed at the end of the beach (Hamilton and Ebersole, 2001). Figure 4-
11 shows the comparison of predicted and measured wave height, mean water level,
vertical profiles of undertow and longshore current, and depth-averaged longshore
current velocity for periodic waves obliquely incident on a long, straight plane 1
on 30 sloping beach (Test 6A-N). Since the plane beach was made of concrete, we
assume a smooth turbulent bottom roughness condition for the model, i.e., the equiv-
alent bottom roughness is determined from ky = 3.3/t with kinematic viscosity,
v =10"%m?/s). Agreement of predicted and measured wave heights, wave set-up,
and undertow velocity profiles is equally as good as previous comparisons for normally
incident waves. Similar to the comparisons of undertow velocity profiles for Cox and
Kobayashi’s (1996) periodic wave experiment, shown in Figure 4-4, the model over-
predicts the seaward-leaning velocity profile near the breaking point, X ~ —11.5 (m).
However, inside the surf zone agreement between measured and predicted undertow
velocity profiles is excellent. Predicted vertical profiles of the longshore current agree
well with measurements with a tendency toward under-prediction of longshore cur-
rents very close to shore. In the comparison of depth-averaged longshore current
velocity, V, multiple full circles at the same z locations are the measurements from
different longshore positions, from which one can see the uniformity and possible
measurement variability of the measured longshore current velocity. As seen in the
Figure, the model successfully captures the well-known observational feature that the
cross-shore location of the peak longshore current velocity shifts shoreward from the

breaking point.

Figure 4-12 shows the forcing terms in the momentum equation for the entire
depth in the shore-parallel (y) direction, (4.50). Similar to Figure 4-5, Figure 4-
12 (a) compares the external forces, (b) shows mean-current-associated forces, and
(c) compares the net external forces, the net mean-current-associated forces, and
the sum of these, i.e. the total bottom shear stress in the longshore y-direction,
Teoy- In these figures, the positive force is acting in the y-direction shown in Figure

4-1. As seen in Figure 4-12 (a), both wave radiation stress force, Fj,,, and the
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Figure 4-11: Comparisons of measured and predicted wave heights, H,, wave set-up,
7, vertical profiles of undertow and longshore current velocity, and depth-averaged
longshore current velocity, V, for periodic waves on plane 1 on 30 sloping beach. Mea-
surements (Test 6A-N) by Hamilton and Ebersole (2001) (full circles) and predictions
(full line).
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surface roller force, Fj,,, are maximum and minimum, respectively, at the breaking
point, X ~ —12 (m) where they counteract each other. Thus, the net external force,
Fywy + Fypy, becomes virtually zero at the breaking point. Zero-net external force at
the breaking point allows the continuous transition of the net longshore external force
beyond the breaking point. This feature, i.e. Fpyy + Fsyy =2 0 at the breaking point, is
obtained because the present surface roller model assumes only half of the broken wave
energy dissipation to be transferred to the surface roller, i.e. —9F/0x ~ 20F,,./dx
at the breaking point. If the model assumes more than half of the broken wave
energy dissipation to be transferred to the surface roller, i.e. —OF/0x < 20E,,/0x,
then —I';,, dominates F,, and yields a negative net longshore external force at the
breaking point. The negative net external force may result in predicting unrealistic
negative longshore current velocity in the vicinity of the breaking point. As seen in
Figure 4-12 (a), the cross-shore location of the peak external force is shifted from the
breaking point toward inside the surf zone. This surface roller effect has been pointed
out and introduced in one-dimensional longshore current models (e.g., Kuriyama,
1994; Okayasu et al., 1994; Reniers et al., 1995; Osiecki and Dally, 1996; Reniers and
Battjes, 1997; and Ruessink et al., 2001).

In contrast to the force comparisons in the cross-shore (z) direction, shown in
Figures 4-5 and 4-8, the magnitude of mean-current-associated forces, such as Fypmy
and [gym,, are comparable to the longshore external forces because external forces in
the y-direction are not as large as those in x-direction when waves are near-normally
incident on a long, straight beach. In this particular experiment case (Test 6A-
N), for example, the angle between incident wave direction and z-axis is relatively
small (10°) and the maximum wave radiation stress forces at the breaking point in
z and y-directions are Fy,, =~ 23 (N/m?) and Fy,, ~ 2 (N/m?), respectively. In the
shore-parallel (y) direction, therefore, the mean-current associated forces are of equal
importance to longshore external forces. In Figure 4-12 (b) mean-current-associated
forces, Fymy, Fswmy, and Fyup,, virtually balance each other and the net mean-current-
associated force becomes much smaller than each of the three contributions. However,

the magnitude of this net mean-current associated force is still comparable to the net
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Figure 4-12: Comparisons of the longshore forcing terms in (4.50) for LSTF exper-
iment (Test 6A-N): (a) external forcings and hydrostatic pressure forces; (b) mean-
current-associated forces; (c) total forces.
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external force (see Figure 4-12 (c¢)). The net mean-current-associated force increases
the total longshore force, 7., outside the surf zone (X (m) < —12) and near the shore-
line (X (m) > —7) and it reduces 7., in the outer surf zone (—12 < X (m) < —7).
As a result, the peak of 7., is shifted further inside the surf zone compared to the
peak of net external force, Fyyy + Fsry, and the cross-shore profile of 7., becomes
gentler than that of F,, + Fsyy. Although Svendsen and Putrevu (1994) did not ac-
count for the surface roller, they also introduced the current-current and wave-current
convective acceleration terms, Fymy and Fyumy, and showed these forces smooth out
the cross-shore profiles of the longshore current velocity and shift the peak longshore
current velocity toward inside the surf zone. Svendsen and Putrevu (1994) also sug-
gested, from their order-of-magnitude analysis, that this convective forcing works as
a Bowen-type (Bowen, 1969) empirical lateral mixing but is about ten times larger
than the lateral mixing due to turbulence. The present model shows the same feature
in Figure 4-12 (b), in which the force due to the turbulent eddy viscosity, Fyyy, is
negligibly small compared to the other three mean-current-associated forces, Fin,,
Fowmy, and Fgpy. It should also be pointed out that the current-current interaction
terms, 9 (UV') /Ox, need to account for the different mean current velocities, i.e. the
one near the surface and the other averaged over the trough water depth, hy,, other-
wise the term 9 (UV) /Ox becomes zero under the long, straight beach assumption,

where the total volume flux in the cross-shore direction must be zero.

SHORECIRC (Van Dongeren et al., 1994) is based on the concepts of Svendsen
and Putrevu (1994) and accounts for the current-current and wave-current interac-
tions in the integrated momentum equations over the entire depth. Besides the depth-
integrated momentum equations, the present model solves the momentum equations
integrated above the trough level, (4.33) and (4.41), and accounts not only for wave
and surface roller effects but also for the mean-current-associated convective effects
to evaluate the shear stress at the trough level, 7,,,. Figure 4-13 shows the forc-
ing terms in the momentum equation above the trough level in the shore-parallel
(y) direction, (4.41), for the same experiment. Similar to Figure 4-12, Figure 4-13

(a) compares longshore external forces, (b) shows the mean-current-associated forces,
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and (c) illustrates the net external force, the net mean-current-associated force, and
the sum of these, i.e. the total shear stress at the trough, 7.,,. Because the wave
force above the trough, Fj,, is smaller than the one for the entire depth, I}, Fy.,
dominates near the breaking point and yields a negative net external force around the
outer surf zone (—12 < X (m) < —11 in Figure 4-13 (a)). Well inside the surf zone,
decreasing surface roller energy yields Fj,, acting in the same direction as F,, and
increases the net external force. The mean-current-associated forces also counter act
each other but the net mean-current-associated force is still relatively larger than the
net longshore external force (see Figures 4-13 (b) and (c)). Finally, the net longshore
mean-current-associated force significantly decreases 7.5, and yields negative 7,4, in
—8.5 > X (m) and increases 7.4, near the shoreline, X (m) > —8.5. The effect of 7.,
is seen in the comparisons of vertical profiles of the longshore current velocity shown
in Figure 4-11. In the first two vertical profiles of the longshore current velocity from
the deeper water, the negative 7.4, causes the longshore current velocity to be slightly
“backward-leaning” as the trough level is approached. In the last three longshore cur-
rent velocity profiles closer to the shoreline, the longshore current velocity becomes
“forward-leaning” as the trough level is approached because 7.4, is positive in this
region. Similar to Figure 4-12 (b), the lateral mixing force due to turbulence, F,,,

is negligibly small compared to the other mean-current associated forces.

The contributions of the various forcing terms to predictions of the longshore cur-
rent velocity are more clearly illustrated in Figure 4-14 which compares predicted and
measured depth-averaged mean longshore current velocity for this experiment. Full
circles in the figure are the measurements and longshore current velocity profiles num-
bered from 1 to 5 are the predictions by the present model when the following terms
are included: (1) only wave forces, Fyyy, and Fyy,y; (2) wave forces, Fyy,y and Fpy,y, and
the lateral mixing due to turbulence, Fj,, and Fy,y; (3) (1) plus surface roller forces,
Fyp and Fy.p; (4) (2) plus surface roller forces, Fi,., and Fj.,; (5) all terms except
mean-current associated forcing terms, Fyn,, Fiymy, and Fspy, in the momentum
equations integrated above the trough, (4.33) and (4.41); and (6) all terms. For all

the cases, Madsen’s (1994) modified wave-current bottom boundary layer model was
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Figure 4-13: Comparisons of the longshore forcing terms in (4.41) for LSTF exper-
iment (Test 6A-N): (a) external forcings and hydrostatic pressure forces; (b) mean-
current-associated forces; (c) total forces.
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applied to specify the bottom boundary condition, i.e. T.. (1) corresponds to the
Longuett-Higgins’ (1970) original model without any lateral mixing terms and the
predicted longshore current velocity profile (1) is similar to the cross-shore distri-
butions of Fpyy. (2) accounts for the lateral mixing due to the turbulence and the
predicted longshore current velocity is smoothed out comparing to (1). However, the
peak of (2) is still near the breaking point and the model over-predicts the longshore
current velocity near the breaking point and under-predicts the longshore current ve-
locity well inside the surf zone. (3) adds the surface roller effect to (1). Similar to (1),
the longshore current velocity profile (3) is similar to Fy,, + Fy,, shown in Figure 4-12
(a). The surface roller significantly shifts the peak longshore current velocity toward
inside the surf zone and, as discussed in the force balance comparisons in Figure 4-12
(a), the model predicts virtually zero longshore current velocity at the breaking point
and the predicted longshore current velocity (3) is continuous without introducing the
lateral mixing term. Similar to the comparison between (1) and (2), lateral mixing
term smooths (3) and yields (4). However, the model still over-predicts the longshore
current velocity in the outer surf zone (—12 < X (m) < —7) and under-estimates near
the shoreline (X (m) > —7). (5) includes the lateral convective terms for the entire
depth but neglects the mean-current-associated force in the momentum equations
above the trough, (4.33) and (4.41). In this manner, (5) is similar to SHORECIRC
(Van Dongeren, 1994) although (5) also accounts for the surface roller effects and
evaluates the bottom shear stress from Madsen’s (1994) model. Comparing (5) and
(4), the lateral convective forces spreads the longshore forcing near the breaking point
toward outside the surf zone and well inside the surf zone and increases the longshore
current velocity both outside and well-inside the surf zone. As seen in the figure, the
peak of the longshore current velocity in (5) is shifted in the shoreward direction from
the peak of (4). Finally, the complete model (6) adds the mean-current-associated
forces in the momentum equations above the trough, (4.33) and (4.41). As discussed
previously, the mean current associated forces in the longshore direction are rela-
tively large compared to the longshore external forces and affects the predictions of

longshore current velocity near the surface, V. Comparing (5) and (6) in Figure
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4-14, the mean-current-associated forces above the trough further distributes and
smooths the longshore current velocity by decreasing the longshore current velocity
for —10 < X (m) < —7 and slightly increase it for X (m) > —7 and —11 > X (m).
Finally, Table 4.1 summarizes the root-mean-square errors, o(m), between measured
and predicted depth-averaged longshore current velocities. As seen in the table, o
decreases, i.e. the predictive skill of the model improves as we progress from (1) to
(6). In the complete model, ¢ is about 7cm, which is about 15% of the peak longshore

current velocity.

Figures 4-15, 4-16 and 4-17 show the same comparisons as Figures 4-11, 4-12, and
4-13, respectively, but for random waves obliquely incident on the same LSTF concrete
beach (Test 8A-E, reported by Hamilton and Ebersole, 2001). Similar to Figure 4-7,
in which random waves are normally incident on a uniform plane beach, predicted
undertow velocity profiles agree very well with measurements even outside the surf
zone. Superb agreement of predicted and measured longshore current velocity is also
seen in Figure 4-15. All the forcing terms in Figures 4-16 and 4-17 vary smoothly
for random waves but show the similar characteristics to those seen in Figures 4-
12 and 4-13. For example, both Fj,, and mean-current-associated forces decrease
Teoy 10 the deeper water and increase 7., near the shore line. Above the trough,
as seen in Figure 4-17 (c), the net mean-current-associated force dominates the net
external force and is responsible for the decrease in 7,4, for —8 > X (m) and the
increase in T.q, for X (m) > —8. Figure 4-18 shows the longshore current velocity
comparisons in a similar manner as Figure 4-14, but for the random wave experiment
(Test 8A-E). As seen in Figure 4-18, the near-identical velocity profiles for (1) and
(2) or (3) and (4) indicate that the turbulent lateral mixing has a negligibly small
effect on the prediction of the longshore current velocity because, as first suggested
by Thornton and Guza (1981), the predicted longshore current velocity profile is
already smooth for random waves. Comparing (4) with (3), the surface roller force
dramatically decreases the longshore current velocity for —11 > X (m) and increases
it for X (m) > —11. The surface roller force clearly improves the predictive skills of

the longshore current velocity shown in (4) although the longshore current velocity
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Figure 4-14: Comparisons of the depth-averaged longshore current velocity for LSTF
experiment (Test 6A-N): measurements (full circles) and predictions by the present
model when following terms are accounted: (1) only wave forces; (2) (1) plus the
turbulent lateral mixing; (3) (1) plus surface roller forces; (4) (3) plus the turbulent
lateral mixing; (5) all terms except mean-current associated forcing terms above the
trough; and (6) all terms.

Table 4.1: Root-mean-square errors (m/s) between predicted and measured depth-
avaraged longshore current velocity (C6-N).

L 1@ |6 | @ | 6| (6
0.310 | 0.270 [ 0.175 | 0.166 | 0.096 | 0.073
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in —7 > X (m) is still over-predicted by (4). Comparing (4), (5), and (6), inclusion
of lateral convective forces for the entire depth and above the trough improves the
prediction of the longshore current velocity and shifts the peak longshore current
velocity toward the shoreline.

Finally, Table 4.2 summarizes the root-mean-square errors between measurements
and predictions from (1) to (6). In the complete model (6), the root-mean-square error
is less than 3cm, which is about 8% of the peak longshore current velocity.

Note that both predicted and measured vertical profiles of the longshore current
velocity are nearly uniform above the bottom boundary layer in both Figures 4-11
and 4-15. This observation supports our assumption that variations of the local
longshore current velocity over depth, V', are sufficiently small compared with the
depth-averaged current velocity, Vp, to express the mean momentum forcing below
the trough level in terms of depth-averaged currents. It should also be emphasized
that the quantitative predictions of the longshore current velocity is highly dependent
on the balance between the total longshore forcing and the bottom shear stress while
the depth-averaged undertow velocity is already determined by requiring cross-shore
total volume flux to be zero under the assumption of a long, straight beach. In this
sense, the prediction of the longshore current velocity is more sensitive to the bottom
boundary layer model. The excellent prediction of the longshore current velocity
observed in Figures 4-11 and 4-15 therefore supports the applicability of the bottom

boundary layer model for both periodic and random waves.

4.6 Effect of Bottom Roughness

Development of the nearshore mean current model was completed and tested against
multiple experimental data. Omne of the significant improvements of the present
nearshore current model is that the bottom roughness on fixed beds is explicitly
specified by Nikuradse’s (1933) grain size roughness without any calibration while
most nearshore current models apply empirical friction coefficients, whose value has

to be calibrated in each experiment. For example, Longuett-Higgins (1970) param-
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Figure 4-15: Comparisons of measured and predicted wave heights, H,,,s, wave set-
up, 7, vertical profiles of undertow and longshore current velocity, and depth-averaged
longshore current velocity, V, for random waves on plane 1 on 30 sloping beach. Mea-
surements (Test 8A-E) by Hamilton and Ebersole (2001) (full circles) and predictions
(full line).
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Figure 4-16: Comparisons of the longshore forcing terms in (4.50) for LSTF exper-
iment (Test 8A-E): (a) external forcings and hydrostatic pressure forces; (b) mean-
current-associated forces; (c) total forces.

Table 4.2: Root-mean-square errors (m/s) between predicted and measured depth-
avaraged longshore current velocity (C8-E).

(1)

(2)

(4)

(5)

(6)

0.121

0.118

0.0.73

0.070

0.046

0.029
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Figure 4-17: Comparisons of the longshore forcing terms in (4.41) for LSTF exper-
iment (Test 8A-E): (a) external forcings and hydrostatic pressure forces; (b) mean-
current-associated forces; (c) total forces.
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Figure 4-18: Comparisons of the depth-averaged longshore current velocity for LSTF
experiment (Test 8A-E): measurements (full circles) and predictions by the present
model when following terms are accounted: (1) only wave forces; (2) (1) plus the
turbulent lateral mixing; (3) (1) plus surface roller forces; (4) (3) plus the turbulent
lateral mixing; (5) all terms except mean-current associated forcing terms above the
trough; and (6) all terms.
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eterized the alongshore bottom stress by 7, = pc; < ‘[jo + 70‘ (Vo + ) > where
cy is a drag coefficient to be calibrated and < > represents the time-averaged of the
depth-averaged velocity. Feddersen et al. (1998) pointed out that this quadratic form
for the bottom stress has been used widely in steady channel flows but has not been
verified directly in the surf zone and suggested the necessity to calibrate the “best-fit”
¢y to apply this bottom stress model to predictions of the longshore current velocity.

In this section, we first apply the present model to Visser’s (1991) experiments
in which periodic waves are obliquely incident on a plane beach with different fixed
bed roughness that is explicitly determined from the diameter of the bottom sedi-
ment fixed to the bed. Through comparisons of predicted and measured velocity, we
examine our model’s applicability to various “known” bottom roughness on the fixed
bed.

On natural beaches with movable sand beds, however, the diameter of the sand
grain may no longer represent the equivalent Nikuradse roughness. Once the flow
intensity near the bed exceeds the threshold value and initiates sand motion, the
sea bed may form ripples or sheet flow conditions and these bottom conditions may
increase the equivalent bottom roughness above the value of the sand grain diameter.

In the second part of this section, we review some existing movable bed roughness
models and compare them with measured data. We then introduce these movable
bed roughness models into our nearshore current model and apply the model to LSTF

movable bed experiments presented by Wang et al. (2002).

4.6.1 Fixed Bed (“Known” Roughness Case)

Ability of the model to accurately reproduce the effect of varying bottom roughness
for fixed beds is examined through comparison with experiments reported by Visser
(1991) who performed multiple experiments for identical periodic waves obliquely
incident on a plane straight concrete beach with and without a cover-layer made of
gravel. According to Visser (1991), the roughness of the concrete bed was estimated
as Dgg =0.6mm, while in the gravel bed experiment the bottom was covered by 5 to

10 mm gravel with Dgp=8mm. Given the smoothing effect of the cement when sand
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is incorporated in a concrete mix, we expect the equivalent Nikuradse roughness for
the concrete bed to be less than Dsq of the sand mix. So, for the concrete bed, ky is
expected to fall in the lower sand diameter range, say around 0.3mm. For the gravel
beach, Dsg is estimated from the information available to be 6 to 7 mm. Based on
these considerations we assumed a range of bottom roughness in the application of
the modified Madsen (1994) bottom boundary layer model, which assumes ky = Djyg
for flat sand bed, and took kx =0.1, 0.3, and 0.5 mm for the concrete bed and ky =5,
6, and 7 mm for the gravel bed. For Dsy=0.1mm, the bed condition became smooth
turbulent flow, i.e., locally computed smooth turbulent kp-values were slightly larger

than 0.1mm in this particular experimental case.

Figure 4-19 shows the comparison of predicted and measured depth-averaged long-
shore current velocity for experimental Cases 4 and 5 (concrete beach) and 7 and 8
(gravel-covered beach) presented by Visser (1991). The primary difference of the
incident wave conditions between Cases 4 and 7 and Cases 5 and 8 are the wave
periods, i.e. T =1.02s for Cases 4 and 7 and T’ =1.85s for Cases 5 and 8, respectively.
Under the identical incident wave conditions, peak depth-averaged longshore current
velocity for the gravel bed Cases 7 and 8 are slightly less than half of those for the
”smooth” concrete bed Cases 4 and 5. As seen in the figure, our model captures
this decrease of the longshore current velocity. It is also observed from the figure
that the predicted longshore current velocity decreases about 25 percent when ky is
changed from 0.1 mm to 0.5 mm while the decreases of the longshore current veloc-
ity is about 20 percent when ky is changed from 5 mm to 7 mm. This observation
suggests that the prediction of the longshore current velocity is sensitive to the value
of the bottom roughness, ky, if this is varied by an order of magnitude or more. Our
model accurately predicts this sensitivity to bottom roughness through its adoption
of the modified Madsen (1994) bottom boundary layer model to evaluate the bottom

friction experienced by the wave-induced mean shear currents.

The depth-averaged return current, i.e. the undertow, in the long, straight beach
case (0/0y = 0) is constrained by having to balance the shoreward volume flux

above the trough level, which is dominated by wave and surface roller contributions
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Case4& 7

Figure 4-19: Comparisons of measured and predicted depth-averaged longshore cur-
rent velocity, V, for periodic waves on plane 1 on 20 sloping beach with different
bottom roughness. Measurements (Cases 4 and 7 above and Cases 5 and 8 below) by
Visser (1991) (Concrete bed (Cases 4 and 5) by open circles and gravel bed (Case 7
and 8) by full circles) and predictions (Concrete bed (Cases 4 and 5) by dashed line
and gravel bed (Case 7 and 8) by full line).
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Figure 4-20: Comparison of predicted undertow velocity profiles with different bot-
tom roughness for periodic waves on plane 1 on 20 sloping beach (Corresponding to
experimental Case 4 and 7 by Visser, 1991). ky=0.1lmm (dashed line) and ky=6mm
(full line).

that are independent of bottom roughness. For this reason undertow predictions are
insensitive to the specification of the bottom roughness, ky. This conclusion, which
is limited to uniform beach conditions, i.e. /0y = 0, is supported in Figure 4-20 by
the undertow velocities predicted by our model corresponding to Visser’s experiments

for smooth (ky =0.1lmm) and rough (ky =6mm) beaches (Cases 4 and 7).

4.6.2 Comparison with Longuet-Higgins’ (1970) Model

In this section, we compare the present model with classical Longuet-Higgins’ (1970)
longshore current model (referred to as LH model hereafter), which predicts the depth-
averaged longshore current velocity for periodic waves incident on a long, straight

beach with uniform slope. While developments of the present model relied on experi-
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mental data only for the wave breaking criteria, v, = H,/hp in (2.20) and the broken

wave dissipation coefficient, K; in (2.24), Longuet-Higgins’ (1970) model requires

empirical coefficients for lateral dispersion coefficient, NV, and the bottom friction co-

efficient, C; in addition to the breaking criteria, y,. The LH model does not contain

broken wave dissipation coefficient because Longuet-Higgins (1970) assumes the bro-

ken wave height in the surf zone is simply determined by H, = ~,h; without solving

wave energy dissipation. Introducing a parameter, P = 7N tan 3/ (71,Cy), relative

importance of the lateral dispersion force to the bottom friction force, the normalized

depth-averaged longshore current velocity, V* = V' /Vp, is expressed as follows.

When P # 2/5:

_ B (X/Xp)" + A(X/Xp) for0< X < Xp

V=

By (X/Xp)"

and when P = 2/5:

V* _ 49

18 (/)

with

Py

for Xp < X

i (X/Xp) = % (X/Xp)In (X/Xp) for 0<X < Xp

for Xp < X

1
P(1—-P)(P—PB)
1

P(1—D5)(P—PF)

om .
TGg—Z\/ghb tan (3 sin 0,

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)
(4.63)

(4.64)

Here X is the sea-ward distance from the shore-line, Xp is a width of the surf zone,
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i.e. the distance between shore-line and wave breaking point, and 6, is an angle
between cross-shore direction and wave propagation direction at the breaking point.
Although Longuet-Higgins (1970) originally applied a single breaking criteria, v, =
0.78, we apply our wave breaking model, whose excellent agreement with measured
data was confirmed in Chapter 2, to specify the breaking point and corresponding
wave characteristics at the breaking point, vy, and #,. In order to obtain more accurate
predictions for the LH model, we also introduced the mean water shore-line location
predicted by the present wave and surface roller model. If one were to neglect the
wave set-up and apply the still water shore-line, the LH model yields zero longshore
current velocity at the still water shore-line and therefore underpredicts the longshore
current velocity near the shore-line. Based on these variables provided from the
present wave model, we calibrated the empirical coefficients, I” and Cf}, so that the
root-mean-square (rms) error of predicted and measured longshore current velocity is

minimized.

Similar to Figure 4-19, Figure 4-21 shows the predicted and measured depth-
averaged longshore current velocity for Visser’s (1991) experiments, Cases 4 and 7,
and Cases 5 and 8, respectively. In Figure 4-21, heavy dashed and heavy full lines are
the predictions by the present model with equivalent bottom roughness, ky = 0.1mm
and ky = bmm, respectively, and thin dashed and thin full lines are predictions by the
best-fit LH model. As seen in Figure 4-21, the best-fit LH model tends to over-predict
V outside the surf zone and under-predict the peak longshore current velocity. Table
4.3 compares the rms errors both for the LH model and the present model. The Table
also shows the best-fit coefficients, P and U, and the corresponding lateral dispersion
coefficient, N for the LH model. In Table 4.3, the same comparisons are also shown
for the LSTF experimental cases, Test 6A-N and 8A-E, reported by Hamilton and
Ebersole (2001). For the random wave case, Test 8A-E, we applied either rms or
significant incident wave heights as if these waves were regular waves to determine
the unique breaking point and the corresponding breaking wave conditions. These
breaking wave characteristics are then applied to the LH model because the LH model

is limited to periodic wave conditions. As seen in the Table, rms errors of the present
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model against the measured data are comparable to those for the best-fit LH model
although the present model contains no fitting parameters that are derived from the
experimental data. From the Table, the dispersion coefficient, IV, falls in an order
of 1072 as originally suggested by Longuet-Higgins (1970). However, the best-fit N-
value is nearly doubled from Case 5 (N = 0.006) to Case 8 (N = 0.011) while the only
difference between Cases 5 and 8 is the bottom roughness. This feature indicates the
difficulty in developing a methodology for the determination of sn optimum dispersion
coefficient. For Visser’s (1991) experiments, best-fit friction factors, C}, are consistent
with the bed roughness, i.e. C} is relatively small for concrete bed (C; ~ 0.006 for
both Cases 4 and 5) and large for gravel bed (C; =~ 0.015 for both Cases 7 and
8). On the similar concrete smooth bed condition, however, Cj-value for Test 6A-N
(Cy = 0.0035) becomes much smaller than those for Cases 4 and 5. This feature also
suggests the uncertainty assocoated with establishment of an empirical definition of
(. Considering all these facts, it is one of the essential improvements of the present
model that the model does not contain any of these empirical coefficients and still

rivals the predictive skills of the best-fit classical LH model.

4.6.3 Movable Bed Bottom Roughness

On natural beaches with movable sand grain beds, the diameter of the sand grain may
no longer represent the equivalent Nikuradse grain roughness. Once the flow intensity
near the bed exceeds the threshold value and initiates sand motion, the sea bed may
form ripples or sheet flow conditions and these bottom bed forms may increase the

equivalent bottom roughness.

The equivalent bottom roughness on a movable sandy bed, ky, may be decom-
posed into three components: kyp, grain roughness scaled by a grain size, D multi-
plied by a constant with a value ranging 1 ~ 2.5; kyg, “ripple roughness,” an extra
form drag due to ripple geometry; and ks, a roughness due to the sediment motion
(e.g., Smith and McLean, 1977; Grant and Madsen, 1982; and Xu and Wright, 1986).

Total equivalent bottom roughness on the movable bed is often expressed as a sum
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Figure 4-21: Comparisons of measured and predicted depth-averaged longshore cur-
rent velocity, V, for periodic waves on plane 1 on 20 sloping beach with different
bottom roughness. Measurements (Cases 4 and 7 above and Cases 5 and 8 below) by
Visser (1991) (Concrete bed (Cases 4 and 5) by open circles and gravel bed (Case 7
and 8) by full circles) and predictions (Concrete bed (Cases 4 and 5) by dashed line
and gravel bed (Case 7 and 8) by full line). Heavy lines are the predictions by the
present model with ky = bmm (full) and ky = 0.lmm (dashed) and thin lines are
the predictions by the best-fit LH model.
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of these components (e.g., Smith and McLean, 1977; Grant and Madsen, 1982).
kn =knp +Enr + Evm (4.65)

Although there is no physical justifications for simply adding up these components
to yield the total equivalent bottom roughness, (4.65) seems to be a reasonable rep-
resentation because one of these three roughness values usually dominates the others
depending on bed conditions and (4.65) is therefore equivalent to taking a maximum

of these three roughness.

Relative importance of these three components is often classified in terms of the

Shields Parameter based on a sediment diameter:

Yt (s=1)pgD  (s—1)pgD

where s = p,/p with ps and p, density of the sediment and water, respectively, f/ is
a skin friction factor (Madsen, 1994) determined from (4.26) by replacing equivalent

bottom roughness ky by the bottom sediment diameter, D.

No Sediments in Motion

/

wms 18 smaller than the critical

If the maximum skin friction Shields Parameter,
Shields parameter, 9., no ripples are generated and there is no sediment transport,
i.e. kxgr = kyar = 0. The critical Shields Parameter, 1., is determined from Madsen
and Grant’s (1976) modified Shields diagram, in which the critical Shields Parameter
is expressed as a function of the sediment-fluid parameter,

Sy = % (s—1)gD (4.67)
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with kinematic viscosity, v ~ 1.0 x 107 %(m?/s). Explicit approximation formulae of

this diagram are proposed by Soulsby and Whitehouse (1997) as

0.0855, >/ S, < 1.53 (169
0.0955, */* + 0.056 (1 — exp <— 523» 153 < 8, '

Rippled Bed

When ), exceeds t).,, sand grains are put in motion and form ripples that produce
ripple roughness, kyg, which dominates in (4.65). Geometrical characteristics of sand
ripples generated under waves have been studied both in laboratory experiments and
field measurements (e.g., Inman, 1957; Keneddy and Falcon, 1965; Carstens et al.,
1969; Mogridge and Kamphuis, 1972; Dingler, 1974; Miller and Komar, 1980; Nielsen,
1981; Madsen and Rosengaus, 1988; Sato and Horikawa, 1988; Traykovski et al., 1999;
Li et al., 1998; Styles and Glenn, 2002). Based on these observations, a number of
predictive models for rippled bed geometry have been proposed (e.g., Nielsen, 1981;
Grant and Madsen, 1982; Wikramanayake and Madsen, 1991; Mogridge et al., 1994;
Wiberg and Harris, 1994; Li et al., 1996; Traykovski et al., 1999; Styles and Glenn,
2002). These observations and models indicate that, as 1/}, increases and exceeds
Yer, ripple geometry immediately reaches its “equilibrium” stage where the ripple
steepness, 1, /A, with ripple height, 1,, and length, A\, becomes a maximum and stays
roughly constant independent of +//,,,. Grant and Madsen (1982) suggested that the
ripple roughness, kyg, for equilibrium ripples is expressed by kyr = 27.7n, (1,/A)
based on experiments with periodic waves. Nielsen (1983) also obtained a similar

expression but a smaller roughness,

knr = 8- (0, /) (4.69)

for equilibrium ripples under oscillatory flows. Because 7,./A for equilibrium ripples

is nearly constant, Wikramanayake and Madsen (1991) suggested that kyg may be
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uniquely determined by the ripple height,
kNR = 47]7’ (470)

This simple expression was also verified by Rankin and Hires (2000) in their laboratory

studies of oscillatory flow over equilibrium ripples.

As ] . further increases, the bed form enters a “breakoff” range where the ripple
steepness, 7, /A, decreases and eventually all ripples vanish as “sheet” flow conditions
are approached. Grant and Madsen (1982), based on laboratory experiments with

periodic waves, expressed the breakoff limit for ripples in terms of Shields Parameter,
W = 1.89) % (4.71)

Here the bed form enters the breakoff range when 1/, > /5. Styles and Glenn (2002)
suggested a smaller breakoff limit based on random wave measurements collected both
in field and laboratory. In the breakoff range, kyg should also fade out as ripples
are washed out and the bed enters sheet flow conditions. Due to the lack of data,

however, solid determination for kypr in the breakoff range is not yet available.

In the vicinity of the surf zone, where significant sediment transport is expected,
extensive turbulence due to broken waves and wave induced nearshore currents may
affect geometric characteristics of ripples. Li and Amos (1998) pointed out that most
existing models are based on pure wave conditions and showed, from field observa-
tions, the significant influence of the mean shear current on ripple geometry. This
feature is also observed in Appendix C where existing ripple geometry models are
compared with LSTF movable bed experiments. We leave this problem for future
modifications because we focus on predictions of extensive sediment transport rates

around the surf zone in the field for which sheet flow conditions are expected.
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Sheet Flow

As ), further increases, all ripples are washed out and the bed enters sheet flow
conditions. The initiation limit of sheet flow conditions have also been characterized in
terms of the Shields Parameter (e.g. Dingler and Inman, 1976; Smith and McLean,

1977; Soulsby, 1997; Li and Amos, 1999). According to Li and Amos (1999), for

/

ups 18 expressed as a simple

example, the critical Shields Parameter for sheet flow, v

function of sand grain size

—0.376
W, = 0.172D (4.72)

with diameter, D, in cm. Note that 1/ is based on the skin friction Shields Param-
eter and 1, for random waves is calibrated with the measured maximum Shields
Parameter represented by significant waves, which is about twice the Shields Param-
eter obtained from the root-mean-square wave height adopted as the representative
wave here, i.e. ¥y, >~ 2y, .. Gallagher et al. (2003) compared existing models
and showed that the Li and Amos (1999) model agrees fairly well with field data.
For sheet flow conditions, kyr becomes zero as ripples vanish, but a near-bottom
sheet flow layer of intensive sediment transport calls for extra roughness due to sed-
iment motion, knar. Because knps should be related to bedload sediment transport,
most models express kyjy; as a function of the sediment diameter, D, and Shields
Parameters, ¢/ and 9., determined by (4.66) and (4.68), respectively (e.g., Smith
and McLean, 1977; Grant and Madsen, 1982; Nielsen, 1983; and Madsen et al., 1993,
Xu and Wright, 1995). Based on the field measurements obtained off the coast of
Duck, NC, USA, Madsen et al. (1993) suggested ky = 15D. Since these field data
yielded !, ~ 1 and because it is physically reasonable to assume that the movable
bed roughness for sheet flow conditions depends on the flow intensity over the bed,

which in turn is related to v/}, Madsen (Coastal Engineering Manual, 2001) suggests

wm?

kx for sheet flow to be
kx =15¢,.D (4.73)

Xu and Wright (1995) applied existing roughness models to predict vertical profiles

of the horizontal mean current velocity based on Madsen and Wikramanayake’s (1991)
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wave-current bottom boundary layer model and compared them with the same field
observations presented by Madsen et al. (1993). From these comparisons, Xu and

Wright pointed out Smith and McLean (1977), Grant and Madsen (1982), and Nielsen

(1981) models over-predict kx and proposed

kn =D +5D (., — ter) (4.74)

In contrast to the above models that are based on a skin friction shear stress, with
roughness of a grain diameter, D, Wilson (1989) showed that ky is correlated fairly
well with Shields Parameter based on the total shear stress, 1, and proposed,

ky = 5D (4.75)

From the experimental results for high-stress steady flow over a sheet flow bed (Wil-
son, 1965, 1966), Wilson (1987) also showed that the well-known Meyer-Peter-Muller
(1948) bedload sediment transport formula agrees well with experimental data if the
Shields Parameter, 1, based on the total shear stress, i.e. based on the sheet flow
movable bed roughness, is used instead of a skin friction Shields Parameter, ¢/. This
observation supports the use of the Shields Parameter based on total bottom shear
stress for determination of kx s, because kx s should be strongly related to the bed-

load sediment transport.

Herrmann (2004) expressed the equivalent bottom roughness as a function of the
Shields Parameter, 1, critical shear stress, .., and sediment diameter, ). From

a number of experimental data sets for steady flow over a sheet flow bed (Brooks,
1954; Einstein and Chien, 1955; Barton and Lin, 1955; Nomicos, 1956; Lyn, 1986)

Herrmann obtained

kn = knp+kym

= 2D 445D (¢ — tf.,) (4.76)

Here, knp = 2D may be interpreted as the roughness of an immobile bed (¢ < 9,),
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and kny = 4.5D (¢ — 1., yields a movable bed roughness value close to Wilson’s
(1989) model, (4.75). According to Herrmann (2004), the root-mean-square relative

error of (4.76) from the measured optimum roughness was around 0.35.

In order to extend Herrmann’s (2004) model to the wave-current combined flow,
we assume that the local Shields Parameter, ¢, is represented by the maximum Shields

Parameter, 1,

ky = 2D + 45D (b, — tber) (4.77)

Since the Shields Parameter is roughly proportional to u?, ., v, for random waves

should be represented by root-mean-square wave characteristics.

In order to examine the validity of these equivalent bottom roughness models,
we compare (4.73), (4.74), (4.75), and (4.77) with field measurements presented by
Madsen et al. (1993) [Table 4.4]. In Table 4.4, current shear velocity, u,., and the
apparent bottom roughness, ky, = 302y, were determined so that the logarithmic

mean current velocity profile,

U (2) = = In— (4.78)

I 20a

best fits the mean current velocities measured at various elevations. From the mea-
sured data summarized in Table 4.5, Madsen et al. (1993) adopted Grant and Madsen
(1986) wave-current bottom boundary layer model and evaluated the equivalent bot-
tom roughness, ky, by requiring the predicted mean current velocity at the outer edge
of the wave-current bottom boundary layer, z = 6, to be equal to the measured mean
current (4.78). In this study we followed the same procedure as Madsen et al. (1993)
and re-evaluated ky by applying the Madsen’s (1994) modified wave-current bot-
tom boundary layer model. Table 4.5 summarizes the “measured” equivalent bottom
roughness obtained in this manner and the predicted ky obtained from (4.73), (4.74),
(4.75), and (4.77). In Table 4.5, the equivalent bottom roughness is normalized by the
sediment diameter, ky /D, and the mean relative errors, p, and variances, o, are based
on In ky because the predictions of the nearshore mean current depends on In ky, as

seen in (4.78), rather than on ky. The relative error of the predicted equivalent bot-
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Figure 4-22: Relative equivalent bottom roughness, ky/D vs. Yy rms- Measurements

(full rectangles) presented by Madsen et al. (1993) and models by Herrmann (2004)
(full circles); Wilson (1989) (open circles); Xu and Wright (1995) (triangles); and
Coastal Engineering Manual (2002) (diamonds).

tom roughness, p, is therefore determined by 1 = ((Inky pred — IN kN meas) / I EN prea)

with < > denoting the average.

/
wm,rms

Figure 4-22 compares the predicted and measured ky /D as functions of ¢
shown in Table 4.5. As illustrated in Figure 4-22, the measured relative roughness,
shown as full rectangles, exhibit significant scatter. Note that (4.73), which gives
the smallest error and variance, was originally calibrated from the same field data
shown in Figure 4-22 while (4.75) and (4.77) were obtained from dramatically differ-
ent experiments involving steady flow conditions. In this study, we apply (4.77) to
predict the equivalent bottom roughness for sheet flow conditions. Sensitivity of the
predictions of the mean current velocity to bottom roughness is investigated in the
following section where our nearshore current model is applied to movable bed LSTF

experiments (Wang et al., 2002).
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Table 4.3: Root-mean-square errors of the present model and the best-fit LH model,
and best-fit empirical coefficients for the LH model for experiments (Cases 4, 7, 5,
and 8) presented by Visser (1991) and LSTF experiments (Tests 6A-N and 8A-E)
reported by Hamilton and Ebersole (2001). Predictions for the present model are
based on ky = 0.lmm (Cases 4 and 5) and ky = bmm (Cases 7 and 8). For the
random wave case (Test 8A-E), breaking characteristics of the equivalent periodic
wave, applied to the LH model, are determined from: (A) rms; and (B) significant
incident wave heights, respectively.

rms error (cm/s) best fit parameters (LH)
Cases Yo
LH | Present = Cs N Vo/C

Case 4 3.2 39 0.74 0.28/ 0.0061| 0.008 120.2

Case7 18 25 0.15| 0.0144| 0.010, 512

Case 5 35 36 0,69 0.26| 0.0056| 0.006/ 123.9

Case 8 15 14 0.16/ 0.0160| 0.011, 430

6A-N 6.5 74| 0.65 0.40| 0.0035/ 0.009, 184.1
8A-E (A) 31 30 0.67| 0.18/ 0.0048 0.006| 1409
8A-E (B) 3.9 0.69] 0.0/ 0.0058 0.015| 1183

Table 4.4: Apparent roughness, kyq, obtained from field data (Madsen, et al., 1993)

No. | upm(em/s) | T(s) | dwe(?) | tec(cm/s) | kng(cm)
1 73.4 | 10.1 88 2.44 28.14
2 78.8 | 11.1 69 2.37 2.19
3 82.9 | 11.1 81 2.71 4.53
4 90.9 | 11.8 86 3.35 20.67
5 96.2 | 11.8 79 3.14 8.85
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4.6.4 Model Application to LSTF Movable Bed Experiments

To examine the model’s applicability for movable bed conditions, we apply the present
model to LSTF movable bed experiments (Wang et al., 2002). As summarized in
Table 1.1, Test 1 introduced shorter waves and had spilling breakers while Test 3
had longer incident waves and plunging breakers. The median sieve diameter of the
bed sediments is 0.15mm that corresponds to the nominal median diameter, D50 =~
0.167Tmm. From the depth data, which were recorded along cross-shore transects at
intervals of 5mm, both Test 1 and Test 3 had ripples on the bed whose heights ranged

from zero up to lem.

Appendix C shows the observed ripple geometry in Test 1 and Test 3 and compares
observations with some of the existing predictive models for ripple geometry. Accord-
ing to personal communications (Mr. Ernest Smith of ERDC, USACE, Vicksburg,
MS), directions of these ripples were randomly distributed and ripple crests were
rounded off and short in length. The local skin friction wave Shields Parameters,

wns = 2Wumrmss Obtained from the predicted near-bottom wave orbital velocity
were greater than the Grant and Madsen (1982) breakoff limit, ¢/ (=~ 0.35, deter-
mined by (4.71) with D50 = 0.167mm), at all the cross-shore locations. Especially
in Test 3, predicted 1, , were even larger than the sheet flow limit, 1/, (=~ 0.84,
determined by Li and Amos (1996), (4.72), with D,50 = 0.167mm), around the bar
crest where measured ripple heights were nearly zero. Note that excellent predictive
skills for near-bottom wave orbital velocity heights, which were already confirmed in
Chapter 2, supports the validity of the above analysis. According to Nielsen (1981)
and Wikramanayake and Madsen (1991), the random waves tend to generate ripples
with smaller steepness and rounder crests compared with those generated by periodic
waves. Moreover, the extensive turbulence due to breaking waves could also cause
a reduction of the ripple heights and steepness. Based on these discussions, the rip-
ple roughness, ky g, should be much smaller than those introduced in (4.69) or (4.70)

because both of these were originally obtained from laboratory experiments with equi-

librium ripples. From the observational fact that actual ripple crests in the LSTF
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experiments, Test 1 and Test 3, were rounded off and short, the ripple roughness may

be reasonably assumed to have been negligibly small in these experiments.

Figure 4-23 (a) compares the cross-shore distributions of observed depth-averaged
longshore current velocities in Test 1 with predicted longshore currents when the local
equivalent roughness is represented by (i) the present sheet flow roughness model,
(4.77); (ii) the sheet flow roughness by Madsen (Chapter 6 in Coastal Engineering
Manual, 2001), (4.73); and (iii) the roughness scaled by a local ripple height, ky = n,,
Figure 4-23 (b) shows the cross-shore distributions of measured individual ripple
heights (full circles) and spatially averaged ripple heights (dashed line), which were
directly applied to compute the longshore current velocity with ky = 7,. Comparison
of (4.77) and (4.73) is shown in Figure 4-23 (c¢) and by comparison with (b) it is seen
that the sheet flow movable bed roughness ky is less than kygr = 7, by more than an

order of magnitude.

Figures 4-24 (a) — (d) show the same comparisons as Figure 4-23 but for the
experimental case, Test 3. Tables 4.6 and 4.7 show the mean errors (p) of predicted
V (em/s) at each cross-shore location for Test 1 and 3, respectively. Since multiple
measured longshore current velocities are available at the same cross-shore location
from the different alongshore (y) locations, the mean error at each cross-shore location
is determined as an average of the difference between measurements and predictions,
p = {(z) with = V4. — Vineas.and Tables 4.6 and 4.7 show the standard deviation of
measured longshore current velocity to see the potential variance of the measurements.
As seen in both Figures and Tables, the model over-predicts the longshore current
velocity when sheet flow roughness, (4.77) or (4.73) is applied, i.e. when the ripple
roughness is neglected. However, the model under-predicts the longshore current
velocity if ky = kygr = 7, is applied. We can deduce from this observation that the
optimum roughness to yield the best-fit longshore current velocity predictions should
be larger than the roughness corresponding to the pure sheet flow conditions but
smaller than the roughness scaled by the ripple heights. In Test 3, as seen in Table
4.7, kny = n, appears to yield the minimum mean error for predictions of the longshore

current velocity. As seen in Figure 4-24, however, the model with ky = 7, under-
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Figure 4-23: Cross-shore distributions of (a) depth-averaged longshore current veloc-
ity, (b) ripple heights, (c¢) equivalent bottom roughness, and (d) water depth; Exper-
iments (full circles) presented by Wang et al. (2002) (Test 1) and predictions with
roughness represented by Herrmann’s (2004) (full line); Madsen(2001) (thin dashed
line); and ky = 7, (heavy dashed line).
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predicts the longshore current velocity inside the surf zone where we the relatively
large sediment transports are expected. Considering the significant uncertainty in the
sheet flow roughness, observed in the Figure 4-22, the present nearshore current model
predicts reasonably accurate longshore current velocities when based on Herrmann’s
(2004) sheet flow roughness model, (4.77).

Finally, Figures 4-25 and 4-26 show the comparisons of measured and predicted
wave heights, setup, vertical profiles of cross-shore and longshore current velocities for
Test 1 and Test 3, respectively, when Herrmann’s (2004) sheet flow bottom roughness,
(4.77), was used to specify the movable bed roughness. Although the model slightly
over-predicts the longshore current velocity, as discussed in the previous comparisons,
the predicted vertical profiles of the cross-shore and longshore current velocity agree

reasonably well with measured velocity profiles.

4.7 Summary and Conclusions

The near-shore mean current fields are determined from 2DH momentum equations
integrated above the trough level and over the entire depth, respectively. Vertical
profiles of the mean shear currents are analytically determined from a simple turbulent
eddy viscosity model and a linearly varying mean shear stress obtained from the
trough-level and the bottom shear stresses. Closed form solutions for the mean current
velocity profiles are obtained and integrated to yield explicit expressions for forcings
needed in the integrated momentum equations. This feature dramatically reduces the
computational load for numerical applications of the model. The present near-shore
current model is also applicable to random waves by using external forcings and
volume fluxes for waves and surface rollers determined from our wave and surface
roller models for random wave applications. Although we here limited the model
application to the long, straight beach conditions, the model concepts can be extended
to arbitrary beach profiles including along-shore variability.

In the cross-shore (x) direction, the forces, due to the hydrostatic pressure, wave

radiation stress, and the surface roller, dominate the other forces such as bottom
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Table 4.5: Equivalent roughness, ky/D, obtained from field data (Madsen et al.,

1993)

kn/D

No. [ ¢, | Meas. | (4.77) | (4.75) | (4.74) [ 4.73
1 070 | 50.16 | 7.18| 6.77 | 4.12| 10.50

2 078 | 225| 854| 856| 451 11.66

3 085| 696 9000| 9.18| 488 1276

1 0.99 | 44.97 | 1049 | 11.156 | 5.57 | 14.83

5 1.09 | 1320 | 11.80 | 12.90 | 6.09 | 16.41

7 -0.182 [ -0.178 | -0.635 | -0.018

o 0.593 | 0.605 | 1.004 | 0.474

Table 4.6: Mean errors of predicted and standard deviations of measured longshore
current velocity (Test 1: spilling breaker). Predictions are (1) Herrmann (2004), (2)
Madsen (2001), and (3)ky = 7,

H(cm/s) meas.
X(m) Q @ @ | olcms
-4.13 3.97 4.19 -5.95 1.85
-5.73 3.82 3.67 -3.83 1.40
-7.13 4.13 3.85 -2.32 0.97
-8.73 4.00 3.71 -0.35 0.80
-10.13 1.08 0.84 -1.67 1.19
-11.53 -1.80 -1.97 -4.31 1.30
-13.13 -3.57 -3.69 -5.33 0.75
-14.63 -0.65 -0.66 -1.81 0.74
-16.13 2.65 2.74 1.95 1.16
Average 1.52 1.41 -2.62 1.13
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Figure 4-24: Cross-shore distributions of (a) depth-averaged longshore current veloc-
ity, (b) ripple heights, (c¢) equivalent bottom roughness, and (d) water depth; Exper-
iments (full circles) presented by Wang et al. (2002) (Test 3) and predictions with
roughness represented by Herrmann’s (2004) (full line); Madsen(2001) (thin dashed
line); and ky = 7, (heavy dashed line).
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Figure 4-25: Comparisons of measured and predicted wave heights, H,,,,, wave set-up,
7, vertical profiles of undertow and longshore current velocity, and depth-averaged
longshore current velocity, V', for random waves barred beach with movable sand

bed. Measurements (Test 1: spilling breaker) by Wang et al. (2002) (full circles) and
predictions (full line).
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Figure 4-26: Comparisons of measured and predicted wave heights, H,,,,, wave set-up,
7, vertical profiles of undertow and longshore current velocity, and depth-averaged
longshore current velocity, V', for random waves barred beach with movable sand

bed. Measurements (Test 3: plunging breaker) by Wang et al. (2002) (full circles)
and predictions (full line).
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Table 4.7: Mean errors of predicted and standard deviations of measured longshore
current velocity (Test 3: plunging breaker). Predictions are (1) Herrmann (2004), (2)
Madsen (2001), and (3)ky = 7,

H(cm/s) meas.
X(m) Q @ @ | olcms
-4.13 1.70 2.10 -5.59 1.71
-5.73 2.88 2.93 -6.22 1.93
-7.13 474 4.46 -4.41 1.24
-8.73 5.12 4.70 -3.20 0.96
-10.13 447 4.05 -2.66 1.32
-11.53 3.96 3.58 -2.04 1.69
-13.13 3.35 2.89 -1.48 1.17
-14.63 458 4.09 1.00 1.37
-16.13 5.45 5.15 3.46 3.67
Average 4.03 3.77 -2.35 1.67

friction shear stress and mean-current-associated convective acceleration forces. Rea-
sonable predictions of the wave set-up and set-down are therefore obtained from the
force balance equations without bottom shear stress.

In the shore-parallel (y) direction, in contrast, mean-current-associated convec-
tive acceleration forces were comparable to the wave and the surface roller forces. In
the depth-integrated momentum equations, similar to Svendsen and Putrevu’s (1994)
model, the mean-current-associated forces, such as the current-current, wave-current
and surface roller-current interactions, had significant effects to disperse the longshore
current velocity and, coupled with the surface roller model, to shift the peak of the
longshore current velocity toward the shoreline. These mean-current-associated forces
dominate the lateral mixing due to turbulence and allow us to avoid an empirical lat-
eral mixing to obtain smoothly varying near-shore current fields. The present model
also accounted for the mean-current associated forces in the momentum equations
above the trough level and the trough shear stress obtained in this manner shifted
the peak of the longshore current velocity further inside the surf zone and improved
the predictive skills of the longshore current velocity profiles on the plane beach.

The modified Madsen (1994) wave-current bottom boundary layer model was

adopted to specify the bottom boundary conditions for the near-shore current model.
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The application of Madsen’s (1994) bottom boundary layer model reduces the specifi-
cation necessary to evaluate the bottom shear stress term in the momentum equations
to a specification of the bottom roughness. This bottom roughness may be known,
e.g. in laboratory experiments with fixed-bed roughness, or it may be estimated for
movable bed conditions, such as rippled or sheet flow beds, by introducing the equiv-
alent bottom roughness through empirically determined relationships as functions of
bottom sediment and flow characteristics. Some of these equivalent bottom roughness

models were reviewed and adopted for computations.

Predictive skills of the near-shore current model were examined through compar-
isons with experimental data for periodic or random waves normally or obliquely
incident on uniform plane and barred beaches. The validity of the adoption of the
modified Madsen (1994) wave-current bottom boundary layer model was confirmed
by comparing predicted depth-averaged longshore current velocity with experimental
data by Visser (1991), in which both smooth concrete and gravel beaches were sub-
jected to identical periodic incident wave conditions. The model successfully explains
the decrease of the longshore current velocity due to the increase in bottom rough-
ness. From the model comparison with Visser’s (1991) experiments, we observed that
the longshore current velocity is sensitive to the value of the bottom roughness, ky, if
this is varied by an order of magnitude or more. Therefore, we can expect reasonable
predictions of the longshore current velocity if we know the bottom roughness within

an order of magnitude accuracy.

The model was also applied to the LSTF experiments with movable sand bed,
in which the bed conditions are in a “break-off” range. The model with the sheet
flow roughness slightly over-predicted the longshore current velocity while it under-
estimated with ky = kyg =~ 7., which is about an order of magnitude larger than the
sheet flow roughness.

It should be stressed that no parameter was fitted against any near-shore mean
current data. In the entire nearshore hydrodynamics models, the parameters em-
pirically fitted against the experimental data were (i) the breaking criteria, (u./C),,

(ii) proportionality constant for broken wave dissipation, K3, and (iii) the equivalent
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bottom roughness on the movable bed, ky (Herrmann, 2004). For the fixed bed plane
beach condition, predictive skills of the present model are still comparable to those of
the best-fit classical Longuet-Higgins’ (1970) longshore current model, in which the
optimum empirical coefficients for the lateral dispersion, /N, and the bottom friction,
Cy, are calibrated. For the movable bed condition, the movable bed roughness was
separately obtained from steady flow experiments and none of the LSTF experimen-
tal data was used to calibrate the movable bed roughness. Considering these facts,
quantitative predictive skills of the longshore current model for the movable bed con-
dition, whose mean prediction error of the depth-averaged longshore current velocity

was O (10%), are also overall good.
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Chapter 5

Sediment Transport Model

5.1 Introduction

Nearshore hydrodynamic characteristics are readily obtained from the hydrodynam-
ics model presented in Chapter 4. In this chapter, we apply these nearshore hydro-
dynamic characteristics to construct a process-based predictive model for the local
sediment transport rates on a long, straight beach. The basic idea underlying the
sediment transport model is to apply methodologies developed for flow conditions
outside the surf zone by Madsen (2001) with appropriate modifications dictated by
the new environment. The sediment transport consists of two different modes, (1)
Bedload and (2) Suspended Sediment transports. The effect of the surf zone hydro-
dynamics, such as wave breaking and surface rollers, are taken into account through
the increased turbulent diffusivity due to wave breaking and mean trough shear stress
in addition to the mean current bottom shear stress.

In this Chapter, we first summarize the conceptual bedload and suspended load
sediment transport models (Madsen, 2001) and extend these models to the surf zone.
Applicability of the present model is then tested against the LSTF experiments (Wang
et al., 2002). It should be emphasized that no empirical coefficient is introduced in the
present model, except for the resuspension parameter in the reference concentration
model. This parameter is obtained from steady flow experiments, i.e. independently

determined from the LSTF experiments against which the model’s predictive skills
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are being tested.

5.2 Bedload Sediment Transport

According to Madsen (1991), the conceptual model for the instantaneous bedload

sediment transport rate is expressed as

gsp(t) = q(1) ’7;: Eg,
8
= mmaX[O A Ths ()| — Ter,o]

(VI7s W1 /0 = o /rrsw/p) 70 (1) (5.1)

cos ' (tan ¢y, + tan 3')  |Ths (t)]

with
tanf3 = —% cos 0; (t) = tan fy cos 0 (t) (5.2)
Terg = Tercosf) (1 + :22§;> (5.3)
v = ey o4

where s = p,/p with ps and p the density of the sediment and the fluid, respectively,
T.r0 1s the critical bottom shear stress when 3’ = 0, tan §y = —0ho/0x is the bottom
slope. 0; () is the instantaneous direction of the time-varying “sediment transport”
shear stress, Tis (¢), which is defined in the following section. ¢s ~ 50° and ¢y, ~ 30°
are the angles of static and moving friction, respectively, as recommended by Madsen
(2001) from comparison of (5.1) to experimental findings by King (1991) and Luque
and Beek (1976). Note that ', the local bottom slope in the direction of the bottom
shear stress, also varies with time because the direction of the bottom shear stress,
Ths (1), is a function of time. As seen in (5.1), the bedload sediment transport rate
becomes zero if the magnitude of the bottom shear stress is smaller than the critical

shear stress, i.e. |Ths (t)] < Terp. The critical shear stress on a plane bed, 7.9, is
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determined by 7.0 = ¥erp (s — 1) gD with the critical Shields parameter v, given by
(4.68) in Section 4.6.3.

5.2.1 Sediment Transport Roughness and Shear Stress

The sediment transport shear stress for bedload sediment transport, Tis, is based on
an equivalent sediment transport roughness, kys, and represents the component of
the total bottom shear stress that induces sediment transport. On a rippled bed, for
example, the shear stress component due to the ripple form drag does not directly
induce sediment motion and therefore should not be accounted for as a component
of the shear stress for the computation of sediment transport, 7;,. On a sheet flow
bed, as discussed in Section 4.6.3, Wilson (1987) pointed out that the Meyer-Peter-
Muller (1948) bedload sediment transport formula agreed well with experimental data
if the total shear stress based on the movable bed roughness was introduced as the
sediment transporting force. Madsen’s (1991) conceptual bedload sediment transport
model yields nearly the same bedload sediment transport characteristics as the Meyer-
Peter-Muller formula under the plane no-sloping bed condition. In this sense, 7;, on
a sheet flow bed should be equivalent to the total shear stress and the corresponding

roughness, kys, should be represented by the sheet flow roughness,

kve =k = [2 + 4.5 (Vs — ter)] D (5.5)

as introduced in (4.77) (Herrmann, 2004). On a rippled bed, a number of studies
have suggested that the skin friction shear stress should be based on the roughness
scaled by the sediment diameter, e.g. kys; = D (Madsen, 1991 and 2001), which
yields the ordinary suggested skin friction shear stress, 7j, based on kjy = D and
the corresponding skin friction wave Shields Parameter, 1/, , introduced in (4.66) in
Section 4.6.3. In this study, we distinguish ¢’ based on ky = D and 1, based on
kns because ky, is not always equal to the sediment diameter and we still need to

evaluate ¢!, to determine the movable bed conditions by comparing ¢, with the

critical Shields Parameters for sediment motion, .., break-off, ¢y, and sheet flow,
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Lp» introduced in (4.68), (4.71), and (4.72), respectively. We thus refer to 7, as the
sediment transport shear stress and correspondingly, to ky, as the sediment transport

roughness.

When the sediment transport roughness, ks, is smaller than the “total” movable
bed roughness, ky, Madsen’s (1994) modified wave-current bottom boundary layer
model requires additional computations to evaluate the sediment transport shear
stress from the knowledge of the total shear stress and the ambient flow conditions.
Appendix D summarizes the numerical scheme for evaluation of the sediment trans-
port shear stress for ky > kys based on Madsen’s (1994) modified wave-current
bottom boundary layer model, all of which are presented in the Coastal Engineering
Manual (2001). On rippled beds, adoption of kys = D may be reasonable if the flow
intensity is relatively small and the sand grains individually roll over the bed. As
the flow intensity increases and starts to wash out the ripples, however, moving sand
grains on the bed start to form a “sheet flow layer” and the sediment transport rough-
ness should increase and eventually reach the sheet flow roughness. In this sense, a
smooth transition of the sediment transport roughness is assured for the transition
from rippled bed to sheet flow if the sediment transport roughness is determined from
(5.5) regardless of whether the bed is rippled or not. In this study, however, we focus
on sheet flow conditions, which are predominant in the field near and inside the surf

zone, and therefore have ky = k.

The time-varying sediment transport shear stress, 7 (1), is decomposed into wave

and mean current sediment transport shear stresses
Tos (1) = (Tosa (1) s Tosy (£)) = (Tws () €08 0 + Topsw, Tws (1) sin € + Topsy) (5.6)

Following Madsen’s (1994) modified wave-current bottom boundary layer model,
which is based on linear wave theory and assumption of time-independent turbu-

lent eddy viscosity, vy, the instantaneous wave shear stress, 7,5 (¢), is determined

by

Dy (1) 1

Tws (t) = _pVTT = §pfcwsul%m cos (C‘Jt + 90) (57)
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where y,, is the amplitude of the near-bottom wave orbital velocity, f..s is a friction
factor for the sediment transport shear stress determined from (4.26) with ky = ks,
and ¢ is the phase difference between near-bottom wave orbital velocity, u,, cos (wt),
and the wave-associated bottom shear stress, 7, (¢). In the near-shore region, how-
ever, relatively strong non-linear wave effects are expected and resulting skewness and
asymmetry of the near-bottom wave orbital velocity profile may significantly affect
the net sediment transport rate in the wave-propagation direction, i.e. in the shore-
normal (z) direction. In this study, we first account for the non-linear wave effects
by

Tws (t - <70/("}) = %pfcwsubmubw (t) (58)

where the non-linear near-bottom wave orbital velocity, g, (1), is determined by
(2.7) introduced in Section 2.1.3. Note that (5.8) is equivalent to (5.7) if wp, (1)
has a linear sinusoidal profile. Alternatively, assuming time-varying turbulent eddy
viscosity (Trowbridge and Madsen, 1984), the non-linear wave shear stress may be

expressed by
1
Tws (t - <70/("}) = Epfcws ’ubw (t)’ Upow (t) (59)

In Section 5.6, we respectively apply (5.7), (5.8), and (5.9) to evaluate the wave-
associated shear stress and compare the predicted sediment transport rates with LSTF
experimental data and examine the non-linear wave effects on the sediment transport

characteristics.

The phase difference between uy,, and 7,5 may also yield a phase difference be-
tween instantaneous suspended sediment concentrations and the wave orbital velocity
because the near-bottom sediment concentration should be strongly related to the
time-varying bedload sediment transport rate. Thus the phase difference may affect
the mean wave-associated suspended sediment transport in the wave direction and
therefore influence the balance of the total shore-normal sediment transport rate. In
the shore-parallel (y) direction, however, the wave-associated sediment transport is
generally negligibly small because of the near-normal incidence of the waves. There-

fore, the phase difference as well as wave non-linearity should have little influence
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on the mean longshore sediment transport rate (LSST). This feature will also be

discussed in Section 5.6.

5.2.2 Net Bedload Sediment Transport Rate

Substituting (5.6) into (5.1) and averaging it over a wave period, the net bedload sedi-
ment transport components in the cross-shore (x) and the shore-parallel (y) directions

are

Tsm (4
Ispe = / gss (1 ’b ())’dt (5.10)
bs
_ 7—bsy (t)
= dt 5.11
qsBy T/ QSB ’ 7, t)] ( )

We numerically evaluate the integrations in (5.10) and (5.11) to obtain the compo-

nents of bedload sediment transport rate.

5.3 Suspended Sediment Transport

The suspended sediment transport rate, ¢sg, is generally defined by

Gos (1) = /:+"c(z,t) () dz (5.12)

where 2 is the vertical axis with 2 = 0 at the bed, 2, is the elevation where bedload sed-
iment transport rate switches to suspended sediment transport rate, ¢ (z, 1) is the ver-
tical distribution of suspended sediment concentration, and u (2,t) = (u (2,t) ,v (z,t))
is the horizontal velocity components. Both velocity and concentration are respec-

tively decomposed into mean and wave components,
c(z,t) = C(2)+cy(zt) (5.13)
U(z,t) = U(2)+ iy (21) (5.14)
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where (C’, [7) denote the mean and (cy,1,) are the wave-associated-fluctuations
around the mean. Substituting (5.13) and (5.14) into (5.12) and time-averaging over

a wave period yields the mean suspended sediment transport,

- noo h htn htn
Tos = [ CUGzt [ cpiivdzs [ e,ldzt [ Ciigz
Zp Zp h h

12

noo h
/C’Udz—l—/ I TING 1 (5.15)

The first term in (5.15) is the contribution due to product of the mean current and the
mean suspended sediment concentration and therefore referred to as “mean suspended
load.” The second term in (5.15) is the component due to the wave-associated-
fluctuating velocity and sediment concentration and is therefore referred to as “mean
wave-associated suspended load.” As discussed in Section 5.2.1, the phase difference
between bottom shear stress and wave orbital velocities must be accounted for if this
mean wave-associated suspended load were to be evaluated. The integrations near the
surface, i.e. the third and the forth terms in (5.15), may be assumed negligible because
the suspended sediment concentrations near the surface is considerably smaller than

near the bed.

5.3.1 Further Simplifications

On a long, straight beach we assume that the incident waves are obliquely propagating
toward the shore line at a small angle of incidence. In this case, the wave-associated

sediment transport components in the longshore direction may be assumed negligible.

The total LSST is therefore simplified by
h
gy = Gspy + / OV (5.16)

Similarly, the effect of non-linear asymmetric and skewed near-bottom velocity pro-
files, which appear in (5.7) and may be accounted for in (5.11), are also expected
to be negligible in the evaluation of the longshore sediment transport rate by (5.16).

Non-linear wave velocities may significantly affect the sediment transport balance in
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the direction of wave propagation, i.e. in the cross-shore direction. This feature will

be discussed later in the evaluation of the cross-shore sediment transport rate.

5.4 Mean Concentration Distribution

Assuming that the system is slowly changing in the horizontal direction and neglect-
ing the cross-shore diffusive and advective sediment fluxes, the time-averaged mass

conservation law in the vertical (z) direction requires

oC

o (5.17)

—weC = vy

where vg is the turbulent eddy diffusivity. According to Jimenez and Madsen (2003),

the fall velocity of natural sediment, wy, is determined by

(s—1)gD,
T 0,054 1 5.12/8,,,

(5.18)

where D,, is a nominal sediment diameter (~ D;/0.9 with sieve diameter, D) and

Sin is the fluid-sediment parameter based on D = D,, determined from (4.67).

5.4.1 Turbulent Eddy Diffusivity.

A number of field observations have been performed to indirectly investigate the verti-
cal distributions of the turbulent eddy diffusivity by requiring v, to satisfy (5.17) with
measured vertical distributions of sediment concentrations and sediment fall velocity
(e.g. Vincent and Downing, 1994; Sheng and Hay, 1995; Vincent and Osborne, 1995;
Lee et al., 2002; and Lee et al., 2003). These studies suggest that the turbulent eddy
diffusivity near the bed increases linearly with elevation from the bottom, z. Accord-
ing to Lee et al., (2003), the magnitude of the turbulent eddy diffusivity is scaled by
the maximum of wave-current or mean current shear velocities depending on their

relative intensity. In this study, we assume vs = vr (e.g. Rouse, 1938; Kalinske and
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Pien, 1943; Dobbins, 1944; Hunt, 1954) and take

KlUym? (2 <6)

Vs = VT = § Klye? (6<z<zp) (5.19)

Klas? | [ 72 (zm < 2 < hy)

as is introduced in (4.18), with z,, = h,u?, /u?, being the elevation where ku,.z =
Ruxszy/ 2/ Iy is satisfied. All of these variables are already obtained in the nearshore

hydrodynamics models presented in Chapter 4.

5.4.2 Bottom Boundary Condition

We now need a bottom boundary condition in order to solve (5.17) with the present
eddy diffusivity (5.19) and to obtain the vertical profile of the sediment concentra-
tion. There are two approaches to determine the bottom boundary condition, either
specifying the upward volume flux of the sediment near the bed, the so-called “pickup
function,” or specifying the reference concentration at a certain elevation above the
bottom.

If one were to solve the unsteady advection-diffusion equations for the sediment
concentration, the pickup function may be preferred. For example, Kobayashi and
Johnson (2001) determined the depth-averaged sediment concentration, C, from the

depth-integrated unsteady mass balance equation in the cross-shore direction (CBREAK),

% (hC) + % (hCa) = p—w,C (5.20)

with pick up function, p, determined by

. eBDB + efo

= 1) g (5.21)

where the depth-averaged shoreward velocity, % (1), is obtained from a separate hy-
drodynamic model, Dp is an energy dissipation rate due to wave breaking, D; is

an energy dissipation rate due to bottom friction, and ep and ey, are empirical co-
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efficients of suspension efficiency for Dp and Dy, respectively. In their model, the
bottom sediments are accumulated if settling volume flux, w;C, dominates the up-
ward volume flux, p, and the bottom sediments are eroded if vice versa. Because their
model applied C to determine the settling volume flux, which should be a product
of wy and the near-bottom sediment concentration, the model may not be applicable
to the system in which the vertical variations of the sediment concentration is not
negligible. Qin et al. (2002) applied the unsteady 1DV advection-diffusion equation
to determine the vertical distributions of the suspended sediment concentration with
bottom boundary condition specified by Van Rijn’s (1984) pick up function. Although
they accounted for the vertical variation of the suspended sediment, advective and

diffusive horizontal volume fluxes were neglected.

In the equilibrium state, i.e. when the upward and downward sediment fluxes
balance each other as seen in (5.17), the relationship between upward entrainment
rate (pickup function), p, and the reference concentration at a certain height above
the bottom, (.., can be found from the vertical mass balance equation (5.17) (Nielsen,
1992):

p=w;C, atz=2 (5.22)

Hence, either approach, pickup function or reference concentration, can be equiva-
lently applied under the assumption of the equilibrium state, (5.17). Since we focus
on the predictions of the time-averaged sediment concentration, we simply adopt a

reference concentration approach.

Einstein (1950) first suggested that the reference concentration should be strongly
related to the bedload sediment transport rate and the saltating load layer thickness.
He also suggested that the reference elevation above the bed, z,., should be related to
the thickness of the bedload transport layer and took z, = 2D. Yalin (1963) proposed
that the sediment concentration near the bed in unidirectional flow is proportional to

the normalized excess skin friction shear stress:

7—/ — Ter

S =

(5.23)

TCT
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Following Yalin (1963), Smith and McLean (1977) determined the reference concen-

tration for unidirectional flow as a function of S:
(5.24)

where 2y is the roughness height in the boundary layer, C;, (~ 0.65) is the volumetric
bed concentration and - is the resuspension parameter to be calibrated. Smith and
McLean (1977) introduced the factor (1+7,S') " to ensure that the maximum of
(5.24) should not exceed the volumetric bed concentration, C,. For 705 < 1, (5.24)

is nearly proportional to S’ as suggested by Yalin (1963), i.e.
CT (Z()) = Cb’}/os/ (525)

This approach has been widely used for both unidirectional flow in rivers and estuaries
and for combined waves and currents in the coastal environment (e.g., Madsen et
al., 1994; Webb and Vincent, 1999; Green et al., 2000; Rose and Thorne, 2001).
However, the values of the resuspension parameter, v, reported by various authors
vary from 107° to 1072 (Hill et al., 1988; Webb and Vincent, 1999). Empirical fitting
formulae of 7y have also been proposed, based on field data, in which 7y decreases
with increasing skin friction shear velocity (e.g. Vincent and Downing, 1994; Vincent
and Osborne, 1995; Lee et al., 2002). These significant variations of ~p-values may
be largely because of the uncertainty of the roughness height, zy. For example, Webb
and Vincent (1999) predicted z¢ from an equivalent bottom roughness, zo = kn/30.
As shown in Figure 4-22, the measured movable bottom roughness for sheet flow
conditions exhibit significant scatter and the existing predictive models also differ
from each other by about an order of magnitude. Similar scatter of the ripple heights,
which are believed to characterize the ripple roughness, kyg, are also seen in Figures
C-3 and C-4 in Appendix C for both existing models and measurements. Because
the sediment concentration varies dramatically near the bottom, the definition of the
reference elevation, z,, is critical to obtain a widely applicable reference concentration

model. While some studies have arbitrarily set a reference elevation for the reference

185



concentrations (e.g., 2z, = 2em by Vincent and Osborne, 1994; and 2, = lem by Lee et
al., 2003), McLean (1992) followed Einstein’s concept and applied the bedload layer
thickness, 65 to be z,. He pointed out that z, = zy is typically much smaller than
the bedload layer thickness, 65, below which grain-grain collisions can be important
and sediment velocity differs from ambient fluid velocity. Van Rijn (1984) suggested
the reference level, z,, to be related to the bed form height,

2, = 0.5, or ky (with 2., = 0.01h) (5.26)

and expressed the reference concentration based on field measurements in unidirec-

tional flow:

D50 S/1.5

Cr =0.011 ) 592

(5.27)

Note that (5.27) is a function of z., which is much larger than zp (cf. 2o = kn /30 for
rough turbulent boundary layer). The validity of (5.27) was confirmed by Rose and
Thorne (2001) who compared the model with field data collected in the river Taw
estuary, UK, over a sandy rippled bed. However, z, is a function of 7, or kp, which
may contain considerable uncertainty as discussed previously. Wikramanayake and
Madsen (1994) simply adopted 2z, = 7D and proposed the resuspension parameter
in (5.25), to be of the order 1073, Herrmann (2004) followed Wikramanayake and
Madsen (1994) and adopted z, = 7D to determine the reference concentration based

on a number of sheet flow experiments for unidirectional flow:

C, = 0.0022 (Ti - 1) (5.28)

TC ‘s

Herrmann’s (2004) model, (5.28), is based on the same concept as Yalin-type (1963)
models, (5.25), but differs in that (5.28) applies Ty, the sediment transport shear
stress based on the sheet flow bottom roughness while other models apply 7;, the
skin friction shear stress based on the roughness scaled by a sediment diameter. As
discussed in Section 4.6.3, we deduced, from observations presented by Wilson (1665,
1967, and 1987), that the bedload sediment transport on a sheet flow bed should be
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determined by 7,5 and not 7;. Since the reference concentration is strongly related
to the bedload sediment transport C, should, for the sheet flow conditions, also be
determined by 7;5. The magnitude C, obtained in (5.28) is consistent with Wiberg
et al.’s (1994) model, who suggested v ~ 0.002 based on a large amount of field
observations. In this study, we apply Herrmann’s (2004) model both for the reference
concentration, (5.28), and for the movable bed roughness, (4.77).

Because Herrmann’s (2004) reference concentration formula (5.28) is based on
unidirectional flow, we need to extend the model for combined wave-current flow con-
ditions. Grant and Madsen (1982) demonstrated that the response time of the rolling
grains on the bed is much smaller than the wave period. Based on this feature, Glenn
and Grant (1987) applied Smith and McLean’s (1977) reference concentration formula
for uni-directional flow as an instantaneous reference concentration and simply aver-
aged it over wave period to obtain the mean reference concentration. Following the
same procedure and introducing (5.6) into (5.28), the mean reference concentration

for combined wave-current flow is determined by

0022 [T Fs (t
c, = 20 max (o, 76 (O] 1) dt (5.29)
T b Ter,p'

Note that 7, (1), defined in (5.6), is the time-varying shear stress based on the sheet
flow roughness, (4.77), and the instantaneous reference concentration becomes zero if
|Tvs (t)] < Terg. The critical shear stress on the slope, 7., 4/, also changes with time

depending on the flow directions.

It should be pointed out that Herrmann’s model (5.28) is based on experimen-
tal data for sheet flow bed conditions. Characteristics of C, may significantly differ
between rippled bed and flat bed conditions. This feature was observed by Webb
and Vincent (1999), who plotted C, at z. = zp as a function of skin friction Shields
Parameter and showed the dramatic decrease of C, at the limit between equilibrium
and breakoff ripples. When sharp-crested ripples are generated by regular waves, lab-
oratory results indicate that vertical advections associated with large vortices around

the ripple crests dominate the turbulent eddy diffusivity near the bed (e.g. Sleath,
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1982; and Ribberink and Al-Salem, 1994). The detailed modeling of C, for equilib-
rium ripple beds and smooth transition of C, in the breakoff ripple region may be
required for the establishment of a complete suspended sediment transport model.
Here, however, we deal with sheet flow conditions and thus avoid this challenging

problem.

5.4.3 Mean Concentration Profiles

Solving (5.17) with turbulent eddy diffusivity (5.19) and bottom boundary condition

(5.29), vertical profiles of the mean concentration are explicitly obtained as

__vr
G, (2) = (2, < 2 <)
C=1 Cs (5)f (6 <2< 2m) (5.30)
C.,. exp (,fuﬂ (@ - \/%)) (2m < 2 < hyr)
with
5\ Fi
_
C., = Cs (%’”) (5.32)

5.4.4 Mean Longshore Suspended Sediment Transport

As introduced in (4.27), the longshore current profiles are expressed as

AlylnziO 20<z2<é
Vi+ AgyIn2 4+ A3 22 (6§ <2< 2,

V= § 2y s 3Y hy, ( =~ = ) (5‘33)
‘/;m +A4y (\/E_ \/Zm) (Zm S 4 S htr)
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with

Teby
Aly PRUsm,

chﬂ
AQy KU

= | e (5.34)
A Tesy —Teby
3y PRU e

2 Tesy —Teby hir

A4y PRU s ( Vhir + Teby zzm)

where Vs, V, and V; are mean longshore current velocity at z = 6, 2 = 2, and
z = hy, given by (5.33), respectively. Note that the mean current velocity determined
by (5.33) is valid only where z > zp whereas the vertical integration for suspended
load (5.16) requires the velocity above z.. We thus call for special treatments if

2 < z9. On a sheet flow bed, zy is determined from (4.77) as

7 30 30 ‘

which exceeds 2z, = 7D when 1, > .. + 46. Since the magnitude of 1, is at most
of order 1, z, < 29 does not happen on a sheet flow bed. On a rippled bed, zy based
on the ripple roughness, kyg, can be larger than 2, = 70. Below the outer edge
of the bottom boundary layer thickness based on the total roughness, ky, however,
Madsen’s (1994) modified wave-current bottom boundary layer model is repeatedly
applied to determine the mean current velocity profile based on the sediment transport
roughness, kys. Since the magnitude of ky, is scaled by D, similar to the sheet flow
bed, zg, based on ky, is assured to be smaller than z, = 7D. Therefore, we can always
expect realistic mean current velocities for the integration of (5.16). As discussed in
Section 5.2.1, the numerical scheme for prediction of the velocity profile below the
outer edge of the bottom boundary layer when ky > ky, is presented in Appendix
D. Combining the mean concentration profile (5.30) and the mean longshore current
velocity (5.33), the integrations in (5.16) below z,, can be analytically determined
and the total suspended LSST is represented by

h
qssy = qss1y T gssay + / CVdz (5.36)
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where

gssiy

with

and

where if my = 1:

%)
_ / CVdz

6 (1. 6 .
= C, A2, In— (5 In— _an_> for m; =1
z

(i Zp 20

1 s\ ™ 5 1
CTAlyl oy {(5 (Z) (hlz—o - 11— my

1 r
—I—Z7,< —lnz—>} for my #1
1— mq 20
my = Y
Kilbyn

qssay = /5 CVdz = qsso1,y + qss22.y + Qss23,y

dsso1,y = ‘/:5056111?

§ Zm\ 2
g4ss22,y = 05A2y§ <1Il—>

45523,y

otherwise (mq # 1):

45521,y

45522,y

55923,y

190

(5.37)

(5.38)

(5.39)

(5.40)
(5.41)

(5.42)

(5.43)

(5.44)

(5.45)



As, Cs6? 2 1 (23
qSSQ?),y 3275 (1 ? g (ﬁ - 1)) fOI‘ Mo = 2 (546)
tr
with
my = —1 (5.47)
KU

The integration above z = z,, in (5.36) is numerically evaluated by applying Simp-
son’s 1/3 rule (Hoffman, 1992) with an interval of Az = h/100. Since the suspended
sediment concentration above 2 = z,, is relatively small compared to the concentra-
tion near the bed, numerical errors in the integration do not affect the total suspended

sediment transport rate significantly.

5.5 Grain Size Effect on Suspended Sediment

In the field, the bottom sediments may consist of a mixture of different grain sizes.
In the hydrodynamic model, the characteristics of the mixed-size grains are often
represented by the median sand diameter, Dy, to determine the equivalent movable
bed bottom roughness and corresponding bottom shear stresses. As seen in (5.1), the
bedload sediment transport formula does not contain explicit effects of the sediment
diameter, although the sediment transport shear stress, 7;s, and the critical shear

stress may be slightly affected by grain size.

In contrast to the bedload sediment transport rate, mixed grain sizes may affect
the suspended sediment concentrations in the water column and therefore affect the
suspended sediment transport (e.g., Lee and Hanes, 1996; Lee et al., 2002). As seen in
(5.30), the magnitude of the suspended sediment concentration in the water column is
determined from the balance of upward sediment flux due to turbulent eddy diffusiv-
ity and the downward flux due to gravitational sediment settlement. For instance, the
concentration in the range 6 < z < z,, decreases with the elevation from the bottom,
2, to the power of my = w;/ku,.. If the fall velocity of the sand grains exceeds the
upward sediment flux due to turbulence, represented by k., the suspended sediment

concentration dramatically decreases as the elevation from the bottom increases and
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the resulting suspended sediment transport rate also substantially decreases. The
prediction of the suspended sediment transport is therefore very sensitive to the set-
tling velocity, i.e. the sediment grain size. In this study, we account for the effect of
different grain sizes in evaluation of the suspended sediment transport rate.

We first separate the mixed-size grains into a number of size-classes and find the
weight fractions, f;, of each class through a sieve analysis. Assuming that the bedload
sediment transport rate and the reference concentrations are independent of the sand
grain size, the equivalent i-th sand concentration profile, C; (z), is determined from
(5.30) by replacing w; with the i-th class sand of diameter D; and corresponding
fall velocity, wy;. Here C, is determined based on Djy and specified at z, = 7Ds,.
The concentration component of the i-th size-class sediment is then determined by
:Ci (2)/ (Zf\il sz) Finally, integrating all the components of each concentration
fraction, the mean concentration profiles of the mixed sand grains, C (2), are deter-

mined by . N
C(z) = Zfb,ici (2) /Zfb,i (5.48)
=1 =1

In order to reduce the computational load in a numerical application of the model,
several size-classes may be selected to represent all size-classes. In the following
section, we examine the impact of the different settling velocities and selections of

representative size-classes on predictions of suspended sediment concentrations.

5.6 Model Application to LSTF Experiments

To examine the predictive skills of the present sediment transport model, we apply
the model to the LSTF experiments reported by Wang et al. (2002). In the LSTF
experiments, vertical distributions of the sediment concentrations were measured at
seven cross-shore locations along cross-shore transects at various shore-parallel (y)
locations. These seven cross-shore locations correspond to one of nine cross-shore
stations at which current velocity profiles were also measured. In order to indicate
the cross-shore locations of these nine stations, Figures 5-1 and 5-2 show the same

longshore mean current velocity profiles as Figure 4-25 and 4-26 for Test 1 (spilling
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breakers) and Test 3 (plunging breakers), respectively. In the figures, stations are
numbered from 1 to 9 and profiles of mean concentration of suspended sediment were

measured at stations from 2 through 8.

5.6.1 Sediment Characteristics

Figure 5-3 shows the cumulative distribution of the sieved grain sizes of the sampled
bottom sediments used in the LSTF experiment. As seen in the figure, most sand
diameters are within the range of 0.07mm< D < 0.3mm. The median sieve diameter
of the sampled sands is Dsp = 0.15(mm). In the present model, as discussed in
Section 4.6.3, we apply the equivalent nominal median diameter, D, 59 =~ Ds¢/0.9 =
0.167(mm) to represent the sand characteristics. As a complete application of the
model, we first account for all twenty six diameter classes to evaluate the suspended
sediment concentrations. To simplify the computation we alternatively select several
diameter classes out of all twenty six classes to represent the characteristics of the
bottom sediments. Figure 5-4 shows the weight fractions of each class and the open
circles in the figure denote the six classes with highest weight fractions which were
used to represent the bottom sediment characteristics. The sediments classified in
these six classes accounts for 87% of the entire sediment sample and therefore we
can expect these six classes to reasonably represent the characteristics of the bottom
sediments. Table 5.1 summarizes the sediment characteristics of the twelve finest
diameter classes. In the complete model, we also account for the rest of fourteen
classes but the total weight fraction of these coarser diameter classes are about 0.36%
and their contributions to the sediment transport should be negligibly small. In
Table 5.1, settling velocities for each sand diameter were determined from Jimenez
and Madsen (2003) model (5.18) and the high-lighted diameter classes, D, to Dy, are
the dominant six classes shown as open circles in Figure 5-4.

In the LSTF experiments, the local longshore sediment transport rates (LSST)
were obtained at 20 cross-shore locations from the volumes collected in each of twenty
sand-traps, which are installed adjacent to each other at the downstream end of the

straight beach (Wang et al., 2002). We can also obtain the “measured” suspended
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Figure 5-1: Cross-shore locations of measured longshore current velocity profiles;

LSTF experiments by Wang et al. (2002) (Test 1)
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Figure 5-2: Cross-shore locations of measured longshore current velocity profiles;

LSTF experiments by Wang et al. (2002) (Test 3)
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Table 5.1: Characteristics of bottom sediments in each grain size class

S e('\::l's ze D s D n Wt f b
0,
min | max | (MM | (mm) | (cmis) | (%)

D;| 0.053] 0.063| 0.058/ 0.064/ 0.30] 0.14
D.| 0.063] 0.074] 0.069| 0076 041 111
D3| 0.074| 0.088) 0.081| 0.090, 0.55| 3.69
D4s| 0.088 0.105 0.097| 0.107] 0.75] 9.39
Ds| 0105 0.125| 0.115 0.128 1.01] 1855
Ds| 0.125] 0.149| 0.137| 0.152, 1.35 16.86
D;| 0149 0.177| 0.163| 0.181] 1.78] 19.94
Dg| 0.177| 0.210] 0.194] 0.215 2.29| 12.35
Do| 0210 0.250| 0.230] 0.256] 2.92| 9.83
Dio| 0.250| 0.297( 0.274) 0.304] 3.66] 5.56
D] 0.297] 0.354| 0.326| 0.362] 4.51| 1.84

Di2| 0.354] 0.420] 0.387| 0430 547, 040
0.420, 4.757 0.36

sediment transport rates at Stations 2 to 8, shown in Figures 5-1 and 5-2, by vertically
integrating the products of measured sediment concentrations and current velocities.
From these data, one can indirectly obtain “measured” longshore bedload sediment
transport rates by subtracting the measured suspended sediment transport rate from
the LSST. Note however that these estimations of bedload and suspended load trans-
port rates are very rough because the vertical resolutions of the measured sediment
concentrations and current velocities are not high enough. It should also be pointed
out that the measured suspended sediment concentration itself may contain certain
errors because the measured concentrations were obtained from optical backscatter
sensors (OBS) with OBS response calibrated for a single diameter grain size although
the strong size-dependency of the OBS response is suggested (e.g., Ludwig and Hanes,
1990). Following the discussions in Section 4.6.3, we assume that the bed is reasonably

represented by a sheet flow bed both for Test 1 and Test 3.
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Figure 5-3: Cumulative distributions of sampled sand used in LSTF experiment

(Wang et al., 2002)
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Figure 5-4: Weight fractions of each diameter class. Open circles are the dominant
six classes applied to represent the sediment characteristics.
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Table 5.2: Predicted hydrodynamic characteristics at Station 4 for Test 1 and Test 3.

Hrms T Ub,rms Tebs Ter,0 Tc’/T Tc/T uc*/Ub* tanﬂ
(m) | () | (m/s) | (N/m?) | (N/m?)
Test 1| 0.14 | 1.5 | 0.62 0.15 0.17 0.45 | 0.49 0.58 0.033
Test 3| 0.14 | 3.0 | 0.71 0.21 0.17 0.28 | 0.32 0.72 0.024

5.6.2 Bedload Sediment Transport
Instantaneous bedload transport

In order to investigate the characteristics of the instantaneous bedload sediment trans-
port rates, we first compare the predicted time-varying bedload sediment rates for
Test 1 and Test 3 at Station 4 shown in Figures 5-1 and 5-2, respectively. Table 5.2
summarizes the predicted hydrodynamic characteristics at Station 4. At Station 4,
the still water depth (hg ~ 32cm) and the predicted wave heights (H,,s ~ 14em) are
about the same for both Test 1 and Test 3. However, Test 1 has a shorter wave period
than Test 3 and therefore the relative water depth, h/Lg, for Test 1 is larger than
for Test 3. Thus, as discussed in Section 2.1.3, wave non-linearity effects are weaker
in Test 1 than in Test 3 and the predicted skewness parameter of the near-bottom
wave orbital velocity, te, /Uy, becomes smaller in Test 1 than in Test 3. As discussed
in Section 5.2.1, we examine the wave non-linearity effects by comparing the bed-
load sediment characteristics when the bottom wave shear stresses are determined
by: (A) linear wave assumption (5.7); (B) non-linear wave with time-independent
turbulent eddy viscosity (5.8); and (C) non-linear wave with time-varying turbulent

eddy viscosity (5.9).

(A) Linear Sinusoidal Velocity Profile Figures 5-5 (Test 1) and 5-6 (Test 3)
show the predictions of (a) time varying sinusoidal near-bottom wave orbital velocity,
Upy (1) = Upm cos (wt), (b) corresponding absolute value of the sediment transport
shear stress, |7, (¢)| with wave shear stress determined from (5.7), and (c) and (d)
bedload sediment transport rates in the cross-shore (x) and the shore-parallel (y)

directions, gsps (t) and gspy (1), respectively. All the variables shown in the figures
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are those predicted for Station 4. In Figures (a) and (c), positive values are in the
shore-ward direction. As seen in Figures 5-5 and 5-6, all the profiles are symmetrical
int/T. However, the peak of |1,| at /T = 0 is larger than the other peak at t/T" = 0.5
because the sea-ward acting mean current shear stress, 7T.;s,, increases the total shear
stress when the wave shear stress, 7,5 (f), is acting in the sea-ward direction while
T.pse decreases the total shear stress when it counteracts 7,5 (1) (see Figures 5-5 and
5-6 (b)).

In (b), the dashed straight line indicates the critical shear stress on the non-sloping
bed, 7., 0, and the full straight line denotes the mean current sediment transport shear

stress, |Tops| = /T2 + besy. In Test 1, as seen in Table 5.2 and Figure 5-5 (b), |7hys|

is slightly smaller than 7.,o and the predicted total sediment transport shear stress,
|7ps|, falls below .. in the ranges 0.25 < ¢/T < 0.28 and 0.73 < t/T < 0.75 when
the wave shear stress is near zero. When |T5| < 7.0, the bedload sediment transport
components in = and y directions become zero as seen in Figures 5-5 (c¢) and (d). For
Test 3, in contrast to Test 1, |T.4s| is always larger than 7..9 and the predicted |7

does not fall below 7., (see Figure 5-6 (b)).

In (c) and (d) of Figures 5-5 and 5-6, the full line denotes the prediction by the
complete model (5.1) and the dashed line is the predictions when the bottom slope
effect is neglected, i.e. Gy = 0 is substituted in (5.1). The full straight lines in
these figures are the net bedload sediment transport rates. Although the bottom
slope effect is relatively small, as seen in Figure 5-5 (c), the bottom slope (tan fy =
—0hg/Ox ~ 0.033 at Station 4 in Test 1) decreases the shore-ward sediment transport
near the crests of the near-bottom wave orbital velocity (0.4 < ¢/T < 0.6, t/T < 0.1,
and 0.9 < ¢/T). The bottom slope effect is hardly seen when the wave shear stress
is small (0.1 < ¢/T < 0.4 and 0.6 < t/T < 0.9). In these intervals, the mean
current shear stress in the shore-parallel (y) direction dominates and the time-varying
“transport bottom slope,” tan 3’ in (5.2) becomes negligibly small. The bottom slope
effect on net sediment transport rate predictions will be shown later. Although the
bottom slope in the shore-parallel (y) direction is zero under the long, straight beach

assumption, the cross-shore bottom slope also decreases gsp, (1) near the crest of the
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Figure 5-5: Time-varying profiles of (a) linear sinusoidal near-bottom wave orbital
velocity and corresponding profiles of (b) sediment transport shear stress, (c) cross-
shore () and (d) longshore (y) bedload sediment transport rates at Station 4 in
Test 1 of LSTF experiments. Full and dashed lines in (c) and (d) are when the
bottom slope effect is accounted for and neglected, respectively. (case (A), Tys (1) ~
Upm, cos (wt — 7))
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Figure 5-6: Time-varying profiles of (a) linear sinusoidal near-bottom wave orbital
velocity and corresponding profiles of (b) sediment transport shear stress, (c) cross-
shore () and (d) longshore (y) bedload sediment transport rates at Station 4 in
Test 3 of LSTF experiments. Full and dashed lines in (c) and (d) are when the
bottom slope effect is accounted for and neglected, respectively. (case (A), Tys (1) ~
Upm, cos (wt — 7))
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shore-ward w,, (1), 0.4 < t/T < 0.6, in Figure 5-5 (d). This feature is because the
“Intensity” of the bedload sediment transport, g (¢), defined in (5.1) decreases when
the shear stress acts in the up-slope direction.

It is also interesting to note that the longshore bedload transport, ¢sp,, (1), does
not yield a minimum value as the near-bottom orbital velocity approaches its min-
imum, ¢/T — 1 whereas the cross-shore bedload transport, ¢sp, (1), becomes min-
imum at t/T = 1 (see Figures 5-5 and 5-6 (c) and (d)). In Test 3, qsp, (¢) yields
the local maximum at ¢/7T =1 (Figure 5-6 (d)). In the vicinity of /T = 1, the wave
shear stress acts opposite to the wave-propagation direction and therefore the wave
shear stress in the longshore (y) direction, 7,5y, counteracts the current shear stress in
the longshore (y) direction, 7., and yields a minimum longshore component of the
total shear stress, T, (¢). However, because the wave component in the y-direction is
very small, the mean current shear stress 7.5, dominates 7,4, (¢) and the total shear
stress, Tapy (1) = Tovsy + Twsy (1), still acts in the longshore current direction (y > 0).
Because | 73| is maximum at ¢/T = 1, the “intensity” of the bedload sediment trans-
port, ¢ (1), in (5.1) is also maximum at /7" = 1. Thus the increase of ¢ (¢) dominates
the decrease of Tg, (1) near t/T = 1 and the product of the two components, gspy,

yield relatively large bedload sediment transport in the longshore current direction.

(B) Non-linear Wave Shear Stress Determined by (5.8) Figures 5-7 (Test
1) and 5-8 (Test 3) show the same comparisons as Figures 5-5 and 5-6 but the wave
non-linearity is accounted for by determining the wave shear stress from (5.8). Figures
5-7 and 5-8 (a) show the time varying non-linear near-bottom wave orbital velocity,
Upy (1). Because the wave non-linearity is relatively week in Test 1, the near-bottom
wave orbital velocity profile is nearly sinusoidal in Test 1 and Figure 5-7 shows near-
identical profiles to Figure 5-5 while the velocity profile in Test 3 is skewed and
asymmetrical (see Figure 5-8 (a)).

Comparing Figures 5-6 and 5-8 (c), the non-linear wave velocity profile signifi-
cantly increases the predictions of maximum and minimum cross-shore bedload sed-

iment transport rates (gspumax; ¢sB.zmin) from (352 (m?/year), -512 (m?/year)) to
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(736 (m? /year), -175 (m? /year)) and also increases the net cross-shore sediment trans-
port rate, §sps, from -54 (m?/year) to 28 (m?/year). In the shore-parallel (y) di-
rection (Figures 5-6 and 5-8 (d)), the wave non-linearity raises ¢gpy max from 203
(m?/vear) to 126 (m?/year). However, the predicted net bedload sediment transport
rates, gsp,y, are nearly identical in both non-linear and linear wave orbital velocity
profiles. This feature is more clearly observed in the following paragraph, in which

we compare the net bedload sediment transport rates.

(C) Non-linear Wave Shear Stress Determined by (5.9) Similarly, Figures
5-9 and 5-10 show the same predictions as Figures 5-5 and 5-6 but the wave shear
stress, Tys, was determined by (5.9). Crests of the wave shear stresses for (C) (Figures
5-9 and 5-10 (b)) become steeper then those for (B) (Figures 5-7 and 5-8 (b)) and
the peaks of ¢sp, and ¢sp, in (C) are much larger than those in (B). As a result, the
net cross-shore bedload transport, gsp,, significantly increases from (B) to (C). In
Test 3, for example, Jsp . increases from 28(m?/year) to 135(m?/year). In the shore-
parallel (y) direction, however, the net longshore bedload transport, gsp ,, are nearly
identical in (B) and (C). In Test 3, gsp,, slightly decreases from (B) to (C) because
gspy in (C) is smaller than the one in (B) around the the wave crest ({/7 < 0.2 and
0.4 < t/T) and this decrease of qsp, dominates the increase of gsp, near the peak
(t/T ~ 0.3) when integrating qsp, to obtain the net longshore bedload transport,
Jspy- Comparisons of the cross-shore distributions of net bedload transport rates

among cases (A), (B) and (C) are shown in the following section.

Net bedload transport

Figures 5-11 and 5-12 compare the predicted net bedload sediment transport rate
components in the cross-shore (x) and the shore-parallel (y) directions for Test 1 and
Test 3, respectively. The four lines shown in Figures 5-11 and 5-12 are the predictions
when: (A) (5.7) was applied to determine wave shear stress for sinusoidal velocity
profile (thin dashed line), (B) wave non-linearity was counted by (5.8) (thin full line),

(C) wave non-linearity is accounted for by (5.9) (heavy full line), and (D) same as
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Figure 5-7: Time-varying profiles of (a) non-linear near-bottom wave orbital velocity
and corresponding profiles of (b) sediment transport shear stress, (¢) cross-shore (z)
and (d) longshore (y) bedload sediment transport rates at Station 4 in Test 1 of LSTF
experiments. Full and dashed lines in (¢) and (d) are when the bottom slope effect is
accounted for and neglected, respectively. (case (B), Tys (1) ~ upy (1))
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Figure 5-8: Time-varying profiles of (a) non-linear near-bottom wave orbital velocity
and corresponding profiles of (b) sediment transport shear stress, (¢) cross-shore (z)
and (d) longshore (y) bedload sediment transport rates at Station 4 in Test 3 of LSTF
experiments. Full and dashed lines in (¢) and (d) are when the bottom slope effect is
accounted for and neglected, respectively. (case (B), Tys (1) ~ upy (1))
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Figure 5-9: Time-varying profiles of (a) non-linear near-bottom wave orbital velocity
and corresponding profiles of (b) sediment transport shear stress, (¢) cross-shore (z)
and (d) longshore (y) bedload sediment transport rates at Station 4 in Test 1 of LSTF
experiments. Full and dashed lines in (¢) and (d) are when the bottom slope effect is
accounted for and neglected, respectively. (case (C), Tys () ~ |tpw (£)| tpw (£))
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Figure 5-10: Time-varying profiles of (a) non-linear near-bottom wave orbital velocity
and corresponding profiles of (b) sediment transport shear stress, (¢) cross-shore (z)
and (d) longshore (y) bedload sediment transport rates at Station 4 in Test 3 of LSTF
experiments. Full and dashed lines in (¢) and (d) are when the bottom slope effect is
accounted for and neglected, respectively. (case (C), Tys () ~ |tpw (£)| tpw (£))

206



(C) but the bottom slope effect was neglected. In the comparisons of the net long-
shore bedload transport rates, full circles are the “measured” bedload transport rate
obtained by subtracting suspended load transport rates from the total LSST. Open
circles denote the cross-shore locations where “measured” suspended load transport
rates exceeded the measured LSST and yielded unrealistic negative “measured” bed-

load transport rates.

In the cross-shore (z) direction, both bottom slope and wave non-linearity signif-
icantly affect the predictions of net bedload sediment transport rate, gsp,. In the
cross-shore range of —18 < X (m) < —15 in Figure 5-11, for example, the cross-
shore net bedload sediment transport rate, gsp ., decreases by about 30(m?/year)
from (D) (heavy dashed line) to (C) (heavy full line) due to the bottom slope ef-
fect. Because the bottom slope on the sea-ward side of the bar crest (tan Gy ~ 0.15
in —18 < X (m) < —15) is larger than the bottom slope inside the surf zone
(tan By ~ 0.03), the decrease of gsp, due to the bottom slope is more pronounced
in this area (—18 < X (m) < —15). Between the bar crest and trough in Test
3 (—13.3 < X (m) < —14.3 in Figure 5-12), the water depth increases from the bar
crest toward the bar trough and the resulting large negative bottom slope significantly
increases Jsp, from (D) to (C). Comparing predictions by (A) and (B) in Figures
5-11 and 5-12, the non-linear wave profile also significantly increases the shore-ward
Jsp,z- Because the wave-non-linearity is stronger in Test 3 than in Test 1, as dis-
cussed previously, the increase of the shore-ward gsp , is larger in Test 3 than in Test
1. Comparing (B) and (C), the definitions of wave shear stress due to the non-linear
wave velocity, i.e. (5.8) and (5.9) significantly affect the predictions of net bedload
transport rates in the cross-shore directions. Thus, it should be stressed that the
quantitative evaluations of the non-linear wave effect on the shoreward bedload sed-
iment transport rate still contains significant uncertainty. Because Madsen’s (1994)
bottom boundary layer model is based on the linear wave assumption, for example,
use of the friction factor obtained in this manner may not be appropriate for the

non-linear near-bottom wave orbital velocity profiles.

In the shore-parallel (y) direction, in contrast to the cross-shore (z) direction, nei-

207



(nf / year)

qSB,x

N
Q
S

(' / year)
3

Ose,y

o
o

<
o

z(m)

-15 -10 5 X(m)

Figure 5-11: Cross-shore distributions of the net bedload sediment transport rates
in the cross-shore (z) and the shore-parallel (y) directions (Test 1). Predictions are
based on: (A) Tys (£) ~ Upy, cos (wt) (thin dashed line); (B) 7y (£) ~ up, (¢) (thin
full line); (C) Tys () ~ |t ()] tpy (1) (heavy full line); and (D) same as (C) without
bottom slope effects (heavy dashed line). Full circles are the longshore bedload sed-
iment transport rates obtained from the measurements and open circles denote the
cross-shore locations where measured suspended sediment transport rates exceed the
measured total LSST.

208



nt / year)

aSB,x(

-15 -10 5 X(m)

Figure 5-12: Cross-shore distributions of the net bedload sediment transport rates
in the cross-shore (z) and the shore-parallel (y) directions (Test 3). Predictions are
based on: (A) Tys (£) ~ Upy, cos (wt) (thin dashed line); (B) 7y (£) ~ up, (¢) (thin
full line); (C) Tys () ~ |t ()] tpy (1) (heavy full line); and (D) same as (C) without
bottom slope effects (heavy dashed line). Full circles are the longshore bedload sed-
iment transport rates obtained from the measurements and open circles denote the
cross-shore locations where measured suspended sediment transport rates exceed the
measured total LSST.
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ther bottom slope nor wave non-linearity have a significant effect on the net longshore
bedload sediment transport rate, ¢sp,. For instance, the difference among predic-
tions of (A), (B), (C) and (D) are at most 20(m? /year) for Test 3 near the bar crest
and this difference is a mere 15% of the net longshore bedload transport rate.

In comparisons of the longshore bedload sediment transport rates, full circles de-
note the “measured” bedload sediment transport rates, obtained by subtracting “mea-
sured” suspended sediment transport from the measured total LSST. Open circles are
the cross-shore (x) locations where the “measured” suspended sediment transport
rates exceed the total LSST and yield unrealistic negative bedload sediment trans-
port rates. As seen in both Test 1 and Test 3 (Figures 5-11 and 5-12), three and
four points out of seven measured stations yield negative bedload sediment transport
rates. This feature indicates not only the uncertainty of the “measured” bedload
sediment transport rates but also the relatively small contributions of the bedload

sediment transport to the total LSST in these particular experimental cases.

5.6.3 Suspended Sediment Transport
Reference Concentration

Similar to Figures 5-5 to 5-10, Figures 5-13 and 5-14 show the linear sinusoidal near-
bottom wave orbital velocity, corresponding sediment transport bottom shear stress,
|Ths (t)|, determined from (5.7), and the reference concentration, C, (t), determined
from (5.29) at Station 4 for Test 1 and Test 3, respectively. Because C, is linearly
related to |7y (£)| In (5.29), the predicted time-varying reference concentration is
nearly identical to the sediment transport shear stress. Thin dashed curves in Figures
5-13 to 5-16 are the predicted reference concentrations when the bottom slope effect
is neglected. As seen in the comparisons between the full and dashed lines, the effect
of the bottom slope is negligibly small.

Figures 5-15 and 5-16, show the same comparisons as Figures 5-13 and 5-14 but
when accounting for non-linear wave orbital velocity, up, (¢). In the Figure, the pro-

files with heavy dashed line are predictions when 7, ({) was determined from (5.8)
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Figure 5-13: Time-varying profiles of linear sinusoidal near-bottom wave orbital ve-
locity and corresponding profiles of sediment transport shear stress and reference
concentrations at Station 4 in Test 1. Full and dashed lines in the reference concen-
tration are when the bottom slope effect is accounted for and neglected, respectively.
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Figure 5-14: Time-varying profiles of linear sinusoidal near-bottom wave orbital ve-
locity and corresponding profiles of sediment transport shear stress and reference
concentrations at Station 4 in Test 3. Full and dashed lines in the reference concen-
tration are when the bottom slope effect is accounted for and neglected, respectively.
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(case B) and full line profiles are predictions when 7, (1) was determined from (5.9)
(case C). Thin dashed curves are the same as case (C) but the bottom slope ef-
fects were neglected. Straight dashed and full lines in the comparisons of reference
concentrations are the mean reference concentrations for (B) and (C), respectively.
Similar to comparisons of the net longshore bedload transport rates, the mean refer-
ence concentrations in (C) (full line) tends to be smaller than those in (B) (dashed
line) because, for example in Test 3 (Figure 5-16), the decrease of C. (¢) from (B) to
(C) near the wave trough (/7 < 0.2 and 0.4 < t/T’) dominates the increase of C, ()
from (B) to (C) near the wave crest (0.2 < ¢/7T < 0.4).

Figures 5-17 and 5-18 show the cross-shore distributions of the mean reference
concentration for Test 1 and Test 3, respectively. Similar to the comparisons in
Figures 5-11 and 5-12, four lines denote the predictions when: (A) wave non-linearity
was neglected (thin dashed line); (B) non-linearity was accounted for by (5.8) (thin
full line); (C) wave non-linearity was counted by (5.9) (heavy full line); and (D) same
as (C) but the bottom slope effects were neglected (heavy dashed line). Comparing
(C) (heavy full line) and (D) (heavy dashed line), bottom slope effects on predictions
of mean reference concentration are very small both for Test 1 and Test 3. The non-
linear wave effect determined by (B) is also negligibly small for Test 1 and amounts
to a difference between (A) (thin dashed line) and (B) (thin full line) in Test 3 of
at most 20%. Non-linear wave effect determined by (C) tends to decrease the mean
reference concentration by roughly 20% from the one in case (B). However, as will
be seen in the following sections, these differences are relatively small compared to
the error due to the selections of representative sediment diameters for mixed sand
grains. In subsequent model applications, we show the predictions based on case (C)
to compare with measurements. However, the difference of non-linear wave effects
among cases (A), (B), and (C) will be quantitatively compared with the measured

LSST and suspended sediment transport rates.
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Figure 5-15: Time-varying profiles of non-linear near-bottom wave orbital velocity and
corresponding profiles of sediment transport shear stress and reference concentrations
at Station 4 in Test 1. Profiles are (B) (heavy dashed line), (C) (heavy full line), and
(C) without bottom slope effects (thin dashed line). Straight dashed and full lines in
the reference concentrations are the mean reference concentrations for (B) and (C),
respectively.
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Figure 5-16: Time-varying profiles of non-linear near-bottom wave orbital velocity and
corresponding profiles of sediment transport shear stress and reference concentrations
at Station 4 in Test 3. Profiles are (B) (heavy dashed line), (C) (heavy full line), and
(C) without bottom slope effects (thin dashed line). Straight dashed and full lines in
the reference concentrations are the mean reference concentrations for (B) and (C),
respectively.
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Figure 5-17: Cross-shore distributions of the mean reference concentration (Test 1).
Predictions are based on: (A) Tys (t) ~ upm cos (wt) (thin dashed line); (B) non-linear
profile with 7,5 (£) ~ uy, (¢) (thin full line); (C) Tys (£) ~ |ty (8)] tpy (1) (heavy full
line); and (D) same as (C) without bottom slope effects (heavy dashed line).

Mean Concentration Profiles

Based on the mean reference concentrations obtained by case (C) in the previous sec-
tion, we compare the predicted and measured suspended sediment concentrations. As
discussed in Section 5.5, we account for multiple grain sizes to evaluate the different
sediment settling velocities and resulting different concentration profiles. Figure 5-19
shows the measured (full circles) and predicted (full lines) concentration profiles at
seven cross-shore Stations from 2 through 8 indicated in Figure 5-1 for Test 1. Similar
to the comparisons of longshore depth-averaged current velocity, such as Figures 4-23
and 4-24, the multiple full circles at the same elevations are measurements at the same
cross-shore () location but from the different along-shore (y) locations, from which
one can see the uniformity and potential measurement variability of the measured
concentration distributions. At each station, six full lines are the predicted concen-
tration profiles when each of six sediment diameters, Dy to Dy, shown in Table 5.1,

were applied to determine the concentration profile in (5.30). As discussed in Section
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Figure 5-18: Cross-shore distributions of the mean reference concentration (Test 3).
Predictions are based on: (A) Tys (t) ~ upm cos (wt) (thin dashed line); (B) non-linear
profile with 7,5 (£) ~ uy, (¢) (thin full line); (C) Tys (£) ~ |ty (8)] tpy (1) (heavy full
line); and (D) same as (C) without bottom slope effects (heavy dashed line).

5.5, we applied an identical reference concentration, C,., based on D50 to predict
concentration profiles corresponding to each size-class. Therefore, the only difference
among these concentration profiles at the same cross-shore location is the settling
velocity, whose value varies with sediment diameter as seen in Table 5.1. Among
six concentration profiles shown in each figure, the highest concentration profile is
the predictions for the finest size-class, i.e. D = D,, and the lowest concentration
profile is when DD = Dy is applied. As seen in Figure 5-19, predicted concentra-
tion profiles are very sensitive to the sediment diameters, i.e. the settling velocities.
At Station 2 in Figure 5-19, for example, when the sediment diameter is increased
about 1.5 times from D; = 0.1lmm to Dg = 0.15mm, the corresponding settling
velocity becomes about 1.8 times larger (from wpy = 0.75cm/s to wye = 1.35cm/s)
and the near-surface concentration, Cs = C (2 = hy, ), decreases about 20 times, from

054 =1.5x10"*to CSG =7 %1079,

We now examine the sensitivity of the mean concentration profile predictions to
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Figure 5-19: Comparisons of the predicted and measured mean suspended sediment
concentrations. Measurements (circles) are obtained by Wang et al., (2002) (Test
1) and predictions (six full lines in each figure) are when D, to Dy were applied
respectively. The highest concentrations in each figure is when the finest diameter,
D = Dy, is applied and the predicted concentration lowers as D changes from D, to

Dy.
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the selection of size-classes to represent the mixed-size bottom sediments. Figure
5-20 compares the measured concentrations (full circles) for Test 1 with predictions
afforded by (5.48) when: (i) only a median diameter, D,50 = 0.167mm, is applied
(thin dashed line); (ii) only three diameters of highest weight fractions, Ds, Dg, and
D7, are applied (thin full line); (iii) six diameters, Dy to Dy are applied (thick dashed
line); and (iv) all twenty six diameter classes were accounted for (heavy full line). In
the numerical application, the only difference among case (ii) through (iv) is the num-
ber of size-classes counted in (5.48). In (ii), for example, we applied three size-classes
and evaluated the mean concentration profile of the three reference concentrations
by (5.48). Figure 5-20 clearly shows that the predicted near-surface concentrations
for the single median diameter, case (i), are about an order of magnitude smaller
than those for cases (ii) to (iv), in which multiple grain sizes are taken into account.
This feature makes sense because, as discussed previously, the sediment concentration
exponentially increases with decreasing sediment diameter and the resulting mean
concentration is predominantly determined by the large concentrations due to finer
sediments. Accounting for three diameters, Dy, Dg, and D7, which covers about 55%
of the entire mixture grains, improves the prediction of the mean concentration sig-
nificantly compared to case (i). Taking the other three diameter classes into account
(case (iil)), which cover an additional 32% of the bottom sediments, the predicted
mean concentration becomes slightly larger. The difference between case (ii) and (iii)
is at most 50% (at Station 3) and is considerably less than the difference between
(i) and (ii). Accounting for the last 13% of diameter sizes (case (iv)), the predicted
concentration further increases although the differences between (iii) and (iv) are
considerably smaller than the difference between (i) and (ii). As seen in Table 5.1,
the total weight fraction of the additional finer diameter classes, D¢ through Djs, is
less than 5% but these finer classes still have some effects and increase the mean

concentrations slightly.

At Station 3, the model under-predicts the measured mean concentrations and
the predicted concentrations at Station 3 are lower than those at the neighboring

Stations 2 and 4. As seen in Figure 5-1, Station 3 is located at the bar trough
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Figure 5-20: Comparisons of the predicted and measured mean suspended sediment
concentrations. Measurements (circles) are obtained by Wang et al., (2002) (Test 1)
and predictions are when following diameters were applied: D,50(thin dashed line);

Ds, Dg, and Dy (thin full line); Dy to Dy (heavy dashed line); and all diameter classes
(heavy full line).
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and the water depth at Station 3 is slightly larger than the depth at Stations 2 and
4. The deeper water at Station 3 yields smaller near-bottom wave orbital velocity
and bottom shear stress, which yields a smaller reference concentration, C,, than
at Stations 2 and 4 (see Figure 5-17). Because relatively large concentrations are
predicted and observed at the adjacent Stations 2 and 4, concentrations at Station 3
may be increased if the lateral fluxes of the suspended sediment due to dispersion and
advections are taken into account. A similar underestimation of the concentration at
the bar-trough is observed in Test 3 (Figure 5-2). However, it should also be noted
that the uncertainty of the measured concentrations at Station 3 appears relatively
large. This feature will be observed later when the total longshore sediment transport
rate and the suspended sediment transport rate are compared. In these comparisons,
it will be seen that the measured longshore suspended sediment transport rate, ggg,,,
exceeds the total measured LSST, ¢, at Station 3 in Test 1 (Figure 5-28), which

clearly casts doubts on the accuracy of the measurement at Station 3.

Figure 5-21 compares the measured and predicted mean concentration profiles
at each cross-shore location for Test 3. Similar to Figure 5-20, a thin dashed line,
thin full line, heavy dashed line, and heavy full line denote the predictions when
(i) only Dyso is applied; (ii) Ds, De, and D7, are applied; and (iii) six diameters,
Dy to Dy are applied and (iv) all diameter classes are applied, respectively. Similar
to comparisons for Test 1, the use of the single median diameter, case (i), under-
predicts the mean concentrations by about an order of magnitude. Predictions when
(ii) three, (iii) six or (iv) all diameter classes are accounted for are nearly identical
although the predictions of (iv) are larger than predictions afforded by (ii) or (iii).
The mean concentrations at Station 2 are about an order of magnitude larger than
those at the other Stations. Station 2 is located just sea-ward of the bar crest and
most waves start to break around Station 2 (see Figures 5-2 and 2-22). Breaking
waves yield a large turbulent eddy diffusivity and therefore keep larger amounts of
sediment suspended in the water column. The present model appears to capture this
feature and the predicted concentration profile at Station 2 agree quite well with

measurements. Similar to the concentration comparisons in Test 1 (Figure 5-20), the
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Figure 5-21: Comparisons of the predicted and measured mean suspended sediment
concentrations. Measurements (circles) are obtained by Wang et al., (2002) (Test 3)
and predictions are when following diameters were applied: D,s50(thin dashed line);

Ds, Dg, and Dy (thin full line); Dy to Dy (heavy dashed line); and all diameter classes
(heavy full line).

model under-predicts the mean concentration at the bar-trough, Station 3 (see Figure

5-2).

Mean Suspended Sediment Transport Rate

Figures 5-22 and 5-23 show the cross-shore distributions of predicted and measured
suspended sediment transport rates for Test 1 and Test 3, respectively. The measured
suspended sediment transport rates (circles) are obtained by vertically integrating the
products of measured concentrations and measured current velocity components in
the cross-shore (z) and the shore-parallel (y) directions. Similar to Figures 5-20 and
5-21, predictions are when: (i) only D,so is applied (thin dashed line); (ii) Dy, De,
and Dy, are applied (thin full line); (iii) six diameters, D, to Dy are applied (heavy
dashed line); and (iv) all diameter classes are applied (heavy full line). As seen in the

figures, predictions with all diameter classes (iv) yields the largest suspended sediment
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transport rates although the difference of predictions between the cases with multi
diameter classes, (ii), (iii), and (iv) are relatively small compared to the differences
from the predictions with the single diameter case (i). Overall, the predicted sus-
pended sediment transport rates (iv) agree well with measurements except at Station
3 (X ~ —13m). As noted in the previous section, the large “measured” suspended
sediment transport rates at Station 3 are due to the large sediment concentrations.
As noted in the comparisons of bedload transport rates, the measured suspended load
at Station 3 was larger than the total LSST by a significant amount. We will discuss
the uncertainty of the measured suspended sediment at Station 3 in the following sec-
tion. Tables 5.3 and 5.4 compare measured and predicted cross-shore and longshore
suspended sediment transport rates (m?/year) and compare their relative errors at
each of seven Stations for Test 1 and Test 3, respectively. The relative errors, p, are
normalized by each predicted value, i.e. determined by g = 1 — ¢ssmeas/qsspres- In
Tables 5.3 and 5.4, we compare the predictions based on: (A) 7,5 (t) ~ coswt; (B)
Tws (1) ~ Upy (t); and (C) Tys (1) ~ |tupw (t)| tpw (t). In case (C), we also compare the
predictions with different choices of diameter classes (i) to (iv) while only case (iv),
i.e. the case of all diameter size classes, is accounted for in cases (A) and (B). Because
of the uncertainty of the measured suspended sediment transport rates at Station 3,
average errors in suspended sediment transport rates shown in the tables are obtained
from the values at six stations excluding Station 3. From Tables 5.3 and 5.4, it is seen
that the predicted average suspended sediment transport rates in (C)+(iv) are within
a relative error of at most 42% both in the cross-shore and shore-parallel directions
and for Test 1 and Test 3. Out of seven stations including Station 3, the number
of Stations, whose predicted §ss, and ggs, in case (C)+(iv) fall within 50% from
measurements, are four and five for Test 1 and three and five for Test 3, respectively.
In the cross-shore (z) direction, the case (i) tends to underestimate the sea-ward sus-
pended sediment transport rates while (ii), (iii), and (iv) yield better predictions for
¢ssz- 1t is also seen that the predictions are more sensitive to the choice of diameter
classes, (i) to (iv), than to the determinations of the wave shear stress (A), (B) and

(C). For example, average longshore suspended sediment transport rate for Test 1
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Table 5.3: Comparisons of measured and predicted suspended lord transport rates
in the cross-shore and longshore directions at seven Stations and their relative errors
(Test 1, spilling breakers). Predictions (A) and (B) are only for case (iv) and the

values at Station 3 (X = —13.1m) are excluded for the average values.
meas. Predictions (m°/year) relative error (W)
X(m) © ©

(m’lyear)| (A) | (B) (A) | (B)

@M | @) | i) | v @ | () | (i) | (v)
-5.7|  -373) -622| -624| -249 -407| -43.1| -51.6| 040/ 0.40 -0.49 008 0.4 0.28
71|  -202) -80.1) -81.7| -29.6 -50.3 -54.3| -66.4| 0.75 0.75 032 0.0 0.3 0.70
-87|  -342 -782| -804| -25.1 -44.7) -50.0 -63.9| 0.56] 057 -0.36 024 0.32] 047

-10.1 -37.2] -59.3| -611| -16.6] -30.3| -35.2| -47.4| 037 0.39) -1.24| -0.23] -0.06/ 0.21

Hsx -11.5 -25.8| -40.0| -41.2| -10.7| -18.7| -22.2| -31.3| 0.36| 0.38] -1.40| -0.38] -0.16] 0.18
-13.1 -79.7| -22.3| -233| -7.2| -10.9| -124| -17.7| -2.58| -2.43| -10.02| -6.34| -5.44| -351

-14.6 -27.7| -55.1| -56.2| -10.6] -22.8) -28.8| -42.6 050, 051 -1.61] -0.21] 0.04 0.35

Avg. -304| -62.5| -63.9 -19.6] -346, -389| -50.5[ 051 052 -0.55 0.12] 0.22| 0.40

-5.7 97.4| 136.2| 136.7| 448 81.3] 90.0] 113.0) 028 0.29] -1.17| -0.20| -0.08| 0.14

-7.1 49.0| 163.2| 166.5| 51.0f 949  106.3| 135.3| 0.70) 0.71) 0.04] 048 054 0.64

-8.7 63.8| 150.6| 154.7| 435 81.9| 938 1229| 058 059 -047] 022 032 048

Tssy -10.1 89.4| 106.2| 109.4| 28.7) 531, 623 84.9| 016, 0.18 -2.12| -0.68 -0.44 | -0.05

-11.5 520/ 608 62.7| 16.1) 283 33.6/ 47.7] 014 0.17| -2.22| -0.84] -0.55| -0.09
-13.1 1724| 226| 23.6| 6.9 106 123| 180 -6.62| -6.30| -23.82| -15.27| -13.06| -8.60
-14.6 58.5| 42.7| 43.6] 102 19.6) 235/ 33.0|-037 -0.34] -4.71 -199| -149 -0.77
Avg. 68.3] 109.9| 112.3] 324 59.8| 682 895 038 039 -1.11, -0.14] 0.00] 0.24

predicted by the case (C)+(iv) is about 20% smaller than the one predicted by (A)
while it is about three times larger than the one predicted by (C)+(i) (Table 5.3).
This feature suggests that appropriate knowledge of bottom sediment characteristics
is essential to ensure the accurate prediction of the suspended sediment transport
rate. The model tends to over-predict ggg, but this over-prediction is partially due
to the over-predictions of the longshore current velocity as seen in Section 4.6.3. How-
ever, the ability of the model to predict the mean suspended sediment transport rate
is overall good, considering the fact that the reference concentration model, (5.29),
was obtained from separate experiments for unidirectional steady flow and that the
non-linear wave effects may vary the prediction of C, by some 20% as observed in
Figure 5-18.

Comparing Figures 5-22 and 5-23, the suspended sediment transport rate for the
plunging breaker case (Test 3) has a strong peak near the bar crest (X ~ —14m)

where rms wave heights abruptly start to dissipate while the spilling breaker case
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Figure 5-22: Cross-shore distributions of the net cross-shore, ggss,, and longshore,
Jss,y, suspended sediment tranport rates for LSTF experiments (Test 1). Measure-
ments (circles) and predictions are when following sediment size-classes are accounted
for: (i) Dyso (thin dashed line); (ii) Ds, Dg, and D, (thin full line); (iii) D, through
Dy (havy dashed line); and (iv) all diameter classes (heavy full line).
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Figure 5-23: Cross-shore distributions of the net cross-shore, ggss,, and longshore,
Jss.y, suspended sediment tranport rates for LSTF experiments (Test 3). Measure-
ments (circles) and predictions are when following sediment size-classes are accounted
for: (i) Dyso (thin dashed line); (ii) Ds, Dg, and D7 (thin full line); (iii) Dy through
Dy (havy dashed line); and (iv) all diameter classes (heavy full line).
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Table 5.4: Comparisons of measured and predicted suspended lord transport rates
in the cross-shore and longshore directions at seven Stations and their relative errors
(Test 3, plunging breakers). Predictions (A) and (B) are only for case (iv) and the
values at Station 3 (X = —13.1m) are excluded for the average values.

Predictions (m?/year)

relative error (L)

X Meas. C C

™ wtyen| & | @) @ e

O () [ o) [ O L | G L
5.7 -65.5| -94.7| -80.1| -35.6| -58.9| -61.0/ -709| 0.31| 0.18/ -0.84| -0.11| -0.07| 0.08
-7.1 -27.0| -959| -80.6| -32.0| -55.2| -58.7| -70.5| 0.72| 0.67 0.16 0.51 0.54| 0.62
-8.7 -81.0| -80.7| -66.0| -21.1| -39.5| -44.1| -56.0| 0.00| -0.23| -2.84| -1.05 -0.84|-0.44
q -10.1 -345| -68.6| -57.3| -17.1| -32.0| -36.3| -47.2| 0.50| 0.40| -1.02| -0.08 0.05/ 0.27
S -11.5 -107.4| -55.0| -46.2| -12.1| -23.3| -27.3| -37.1| -0.95| -1.32| -7.86| -3.61| -2.93| -1.89
-13.1 -541.2| -80.5| -74.2| -25.7| -43.3| -47.3| -59.3| -5.72| -6.29| -20.09| -11.50| -10.44| -8.12
-14.6 -380.2| -326.1| -273.6| -63.4| -149.2| -165.7| -207.3| -0.17| -0.39| -5.00| -1.55| -1.29| -0.83
Avg. -115.9| -120.2| -100.6| -30.2| -59.7| -65.5| -81.5| 0.04| -0.15| -2.84| -0.94, -0.77| -0.42
5.7 113.0| 236.4| 199.9| 73.1| 135.1| 145.6| 177.0| 0.52| 0.43| -0.55 0.16 0.22| 0.36
-7.1 106.7| 256.4| 215.7| 71.4| 136.4| 150.7| 188.6| 0.58| 0.51| -0.49 0.22 0.29| 043
-8.7 134.9| 226.0| 184.8| 54.9| 107.0| 121.4| 156.9| 0.40| 0.27| -146| -0.26/ -0.11| 0.14
_ -10.1 34| 184.4| 154.1| 41.4| 81.8/ 95.0/ 126.8] 098] 098 092 096, 096/ 0.97
Ussy -11.5 81.5| 151.6/ 127.4| 319 62.8 74.3| 102.2] 0.46| 0.36| -1.56| -0.30| -0.10| 0.20
-13.1 540.6| 176.8| 162.9| 39.6 79.0 94.1) 130.3] -2.06| -2.32| -12.65| -5.84| -4.74| -3.15
-14.6 330.8| 630.0| 528.6| 177.3| 326.3| 340.7| 400.6] 0.48| 0.37| -0.87| -0.01 0.03| 0.17
Avg. 128.4| 280.8| 235.0f 75.0| 141.6| 154.6| 192.0| 0.54| 045 -0.71 0.09 0.17, 0.33
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(Test 1) does not have such a prominent peak around the bar-crest. The present
model captures this feature reasonably well. This feature, i.e. the difference between

plunging and spilling breakers will be discussed in the following Section.

5.6.4 Total Sediment Transport

In this Section, we compare the bedload and suspended sediment transport and dis-
cuss the relative contributions of these components to the total sediment transport.
Effect of the breaker type, i.e. plunging or spilling, on the sediment transport rate is

also discussed in the comparisons of the longshore sediment transport rates.

Cross-Shore Sediment Transport (CSST)

Figures 5-24 and 5-25 show the cross-shore distributions of bedload (thin full line),
suspended load (dashed line) and the total sediment transport rates (heavy full line)
in the cross-shore directions for Test 1 and Test 3, respectively. In the figures, pre-
dictions are based on case (B), in which the wave shear stress, 7,5 (¢), is determined
by (5.8), i.e. Tys (1) ~ upy (1), and the shore-ward sediment transport rates are taken
positive. As seen in the figures, both bedload and suspended load transports are in
the sea-ward direction and the resulting total sediment transport is therefore away
from the shore. Since the beach profiles of both Test 1 and Test3 reached an “equi-
librium” state in the experiments, the net cross-shore sediment transport should be
close to zero. An equilibrium state requires the model’s predictions to have a shore-
ward sediment transport that balances the sea-ward sediment transport. One of the
primary components that contribute to balancing the sea-ward sediment transport
may be the “mean wave-associated suspended load” discussed in Section 5.3, which
we are not currently considering in our model. For example, Kobayashi and Tega
(2002) showed in their experiments that the mean wave-associated suspended sedi-
ment transport in the shore-ward direction balances the mean suspended sediment
transport rate in the sea-ward direction.

As seen in Figures 5-11 and 5-12, accounting for skewness of the non-linear near-
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bottom wave orbital velocity produces a significant contribution to a shore-ward bed-
load sediment transport. In this sense, evaluation of non-linear wave effects may
significantly affect the cross-shore balance of the sediment transport rate. Figures
5-26 and 5-27 show the same comparisons as those in Figures 5-24 and 5-25 but the
predictions are based on case (C), in which the wave shear stress is obtained by (5.9),
Le. Tys (t) ~ |upy (t)| tpy (t). As seen in the Figures 5-26 and 5-27, the non-linearity
effects significantly increase the shore-ward net bedload transport and the resulting
total cross-shore sediment transport rate approaches zero both in Test 1 and Test 3
over the major part of the surf zone except near the shoreline for both Test 1 and

Test 3 and near the bar-crest for Test 3.

For the plunging breaker case (Test 3), since H,,s/h becomes largest near the bar-
crest, relatively strong skewness and the asymmetry of the non-linear near-bottom
wave orbital velocity are expected. Asymmetry, i.e. rapid rise of the shore-ward wave
orbital velocity is associated with the acceleration momentum forcings. Effect of ac-
celeration on bedload transport has recently been considered (Drake and Calatoni,
2001; Hoefel and Elgar, 2003) and would lead to a shoreward transport contribution
where the wave asymmetry is the most pronounced. As seen in Figure 2-22, mea-
sured and predicted 7. /T is locally smallest near the bar-trough (X ~ —14m). The
small T, causes the rapid rise of the shore-ward wave orbital velocity and therefore
yields the strong wave asymmetry. We do not account for this effect in our bedload
transport model. In fact, given the negligible effect of fluid acceleration on bedload
transport inferred from Madsen’s (1991) analysis of the mechanics of bedload trans-
port, we do not believe that accounting for fluid accelerations would greatly improve
the predictions of a seaward net bedload transport around the bar-crest. However,
given the short time of the rise in velocity prior to maximum orbital velocity would
result in a thinner bottom boundary layer thickness as maximum g, is reached and
this effect would vary the friction factor, f.,, although our model employs a constant
few based on a periodic wave of period T'. If one were to account for the different time
scales for accelerations, i.e. T, when wy, rises from %y min tO Upmax, and T — T, when

Uy decreases from Uy max 1O Upmin, one would then expect larger friction factors and

229



therefore the larger bottom shear stress when 7y, is shore-ward and the smaller shear
stress when Ty, 1s sea-ward. This effect would produce an increase in shore-ward net
bedload transport.

The major sea-ward transport contribution near the bar-crest in Figure 5-25 is
the suspended sediment transport due to considerably larger sediment concentra-
tions. Since the suspended sediment concentration is large, we could also expect the
large shoreward transport contributions due to wave-associated mean suspended load
transport.

Both for spilling and plunging waves (Test 1 and Test 3) a net seaward transport
is predicted in the swash zone, i.e. immediately before the shore line (Figures 5-24
and 5-25). As seen in Figures 2-21 and 2-22, predicted and measured non-linear wave
parameters, w,. /Uy, and T¢. /T show relatively weak non-linear wave effects. Therefore,
the lack of shore-ward sediment transport may be due to the other mechanisms. For
example, our model does not account for the swash zone hydrodynamics while the
swash zone hydrodynamics such as wave run-ups and the varying mean water level
due to surf beats could have considerable effects on the cross-shore sediment transport
processes.

Further modifications of and additions to the model for evaluations of non-linear
wave, wave-associated suspended sediment transport and hydrodynamics and sedi-
ment transport processes in the swash zone, are therefore called for in order to accu-

rately evaluate the cross-shore balance of sediment transport rates on an equilibrium

beach.

Long-Shore Sediment Transport (LSST)

In contrast to the cross-shore sediment transport, we showed in the preceding sections
that the longshore sediment transport is predominantly determined from the mean
current component both in the bedload and suspended load and the effect of the
wave-associated transport components are negligibly small in the longshore direction
due to the small angle of wave incidence. Figures 5-28 and 5-29 show the cross-

shore distributions of the predicted bedload (thin full line), suspended load (dashed
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Figure 5-24: Cross-shore distributions of the measured cross-shore suspended sedi-

ment transport rates (open circles) and the predicted bedload (thin full line), sus-
pended load (dashed line), and the total sediment transport rate (heavy full line) in
the cross-shore direction for Test 1. (prediction case (B) Tys (1) ~ upy (1))
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Figure 5-25: Cross-shore distributions of the measured cross-shore suspended sedi-
ment transport rates (open circles) and the predicted bedload (thin full line), sus-
pended load (dashed line), and the total sediment transport rate (heavy full line) in
the cross-shore direction for Test 3. (prediction case (B), Tys (1) ~ upy (1))
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Figure 5-26: Cross-shore distributions of the measured cross-shore suspended sedi-

ment transport rates (open circles) and the predicted bedload (thin full line), sus-
pended load (dashed line), and the total sediment transport rate (heavy full line) in

the cross-shore direction for Test 1. (prediction case (C), Tys (t) ~ [ty (£)] tpw (1))
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Figure 5-27: Cross-shore distributions of the measured cross-shore suspended sedi-
ment transport rates (open circles) and the predicted bedload (thin full line), sus-
pended load (dashed line), and the total sediment transport rate (heavy full line) in
the cross-shore direction for Test 3. (prediction case (C), Tuys (t) ~ [ty ()] tpw (1))
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line) and the total longshore sediment transport rate (LSST, heavy full line), for
Test 1 and Test 3, respectively. In the Figures, circles are the measured suspended
sediment transport rates obtained in the previous section and the triangles are the
measured total LSST obtained from the volumes collected in the sand-traps installed
at the downstream end of the straight beach in the LSTF (Wang et al., 2002). As
seen in Figure 5-28 at Station 3 (X ~ —13m), the measured longshore suspended
sediment transport rate (~170 m? /year) is about four times larger than the total LSST
(~40m? /year). Similarly in Figure 5-29, the measured longshore suspended sediment
transport at Station 3 (22540 m? /year) is larger than the total LSST (=500 m? /year).
As discussed in the previous section, the estimation of the “measured” suspended
sediment transport rates are rough because these values were obtained by integrating
the products of the measured suspended sediment concentration and the measured
current velocity. However, the estimated suspended sediment transport rates appear
to be consistent with the measured total LSST except at Station 3. This is the reason
why we suggested in the previous section that the measured concentration at Station

3 may be unreliable.

The model predicts peaks of the LSST near the shore-line for both Test 1 and
3 and the pronounced peak near the bar crest for Test 3. Near the shore-line, the
model under-predicts the amount of peak LSST for Test 3 while it predicts nearly the
same quantity as the measured peak LSST for Test 1. The under-prediction of the
LSST near the shore-line may be partially due to the swash-zone transport, which our
model does not explicitly account for. Surf-beat effects may be another reason for the
observed under-predictions. In fact, the measured peaks of the LSST for both Test 1
and Test 3 are land-ward of our predicted shore-line, where the predicted mean water
level and the beach elevation intersect. In order to explain the longshore sediment
transport above the mean water level, the model must account for the swash-zone
hydrodynamics such as wave run-up and low-frequency fluctuation of the mean water

level due to surf-beat effects.

Although the model predicts the peak near the bar-crest for Test 3, the cross-shore

range of the peak is narrower than the one measured and the model under-predicts the
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total LSST near Station 3. As discussed in the comparisons of suspended sediment
concentrations, the under-prediction of the suspended sediment transport at Station
3 may be improved if the lateral flux of the sediments due to advections and diffusions

are accounted for.

Tables 5.5 and 5.6 summarize the measured and predicted local total LSST at each
cross-shore location and the total LSST integrated over the cross-shore (z) direction
and their relative errors for Test 1 and Test 3, respectively. The predictions are based
on all diameter size classes (case iv) and (A), (B) and (C) in Tables 5.5 and 5.6
are predictions when wave-associated shear stress, 7,5 (¢), is determined by 7,5 (£) ~
coswt, Tys (1) ~ Upy (1), and Ty () ~ |tpy ()] Upy (t), Tespectively. Similar to the
comparison of suspended sediment transport rates, relative errors, 1, are normalized
by each prediction, i.e. g = 1 — Gymeas./Qypred.. Table 5.7 summarizes the number
of data points whose relative errors fall within 30, 50, and 65% for the predictions
(C) for Test 1 and Test 3, respectively. The total number of data points are twenty
including two locations above the mean water level, where the model predicted zero
sediment transport rates. In the rest of 18 locations, as summarized in Table 5.7,
only one location is above 65%-error for Test 1 and two locations are above 65%-
error for Test 3 (X = —16.9(m) for Test 1 and X = —13.1(m), —3.4(m) for Test
3). In Test 1, both predicted and measured LSST at X = —16.9 (m) are very small
compared to the other locations and hence the relatively large error at this point does
not affect the predictive skill of the total LSST. In Test 3, X = —3.4 (m) is near the
shore line and X = —13.1(m) is at Station 3 where the model under-predicts the
suspended sediment transport rates. As discussed in the comparisons of suspended
sediment concentrations, this under-prediction may be improved by accounting for
lateral suspended sediment fluxes due to diffusion and advections. The model also
predicts the reasonable total LSST whose relative errors are 22% for Test 1 and -11%
for Test 3.

Finally, Figure 5-30 compares Test 1 and Test 3 in terms of the cross-shore dis-
tributions of the bedload and suspended sediment transport rates. Table 5.8 shows

predicted net bedload and suspended longshore sediment transport rates integrated
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Figure 5-28: Cross-shore distributions of the predicted bedload (thin full line), sus-
pended load (dashed line), and the total sediment transport rate (heavy full line) in
the shore-parallel for Test 1. Measurements (circles, suspended load; and triangles,

total LSST) are obtained by Wang et al. (2002).

237



1200

m’ / year

-15 -10 5 X(m)

Figure 5-29: Cross-shore distributions of the predicted bedload (thin full line), sus-
pended load (dashed line), and the total sediment transport rate (heavy full line) in
the shore-parallel for Test 3. Measurements (circles, suspended load; and triangles,

total LSST) are obtained by Wang et al. (2002).
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Table 5.5: Measured and predicted local LSST and the total LSST integrated over the
cross-shore () axis and their relative errors (Test 1, spilling breakers). Predictions are
based on (A) Ty (t) ~ coswt, (B) Tyws () ~ tpy (t), and (C) Tys (t) ~ |ty ()] tpw (£)-

1, (m’lyear) relative error (1)

meas.| (A) | B)  © | A | B | (©
2.1 7 0 0 0
2.7 230 0 0 0
-3.4 326 240 231 207] -0.36/ -0.42| -0.58
-4.1 201 363 342 303 045 041 034
-4.9 129 197 197 170 035 035 024
-5.6 105 204 211 181| 049, 050/ 042
-6.4 92 225 234 199 059, 061 054
-7.1 91 239 250 212 062, 0.63] 057
-7.9 86 238 250 211) 064, 0.66| 0.59
-8.6 97 221 233 195 056, 058, 050
9.4 94 192 203 169 051, 054 045
-10.1 89 157 167 138] 043 047, 035
-10.9 72 122 130 107] 041 044, 033
-11.6 52 89 95 79] 041, 045 034
-12.4 47 53 58 50( 0.1 0.19| 0.04
-13.1 40 39 44 39 -0.02/ 0.09| -0.01
-13.9 52 41 46 41| -0.27| -0.13, -0.25
-14.6 39 61 66 58 035 041 0.32
-154 33 60 64 54 046 049 040
-16.9 16 1 2 3| -10.31| -6.12| -4.86
Total 1424| 2060, 2121| 1816 031, 0.33] 0.22

X(m)
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Table 5.6: Measured and predicted local LSST and the total LSST integrated
over the cross-shore (z) axis and their relative errors (Test 3, plunging breaker).
Predictions are based on (A) Tus(t) ~ coswt, (B) Tys(t) ~ up (1), and (C)
Tws (1) ~ |ty (£)| e (2)-

Tq, (m’lyear) relative error (1)

meas.| (A) | B)  © | A | B | (©
2.1 512 0 0 0
2.7 726 0 0 0
-3.4 125 482 483 433 0.74] 0.74| 0.71
-4.1 138 174 140 127] 021 0.02, -0.09
-4.9 101 175 149 136 042, 032 0.26
-5.6 88 317 275 248 0.72) 0.68 0.65
-6.4 132 338 286 254 061 054 048
-7.1 98 351 303 269 072, 0.67, 0.63
-7.9 120 379 323 284) 068 0.63] 0.58
-8.6 103 318 269 234 0.68| 0.62] 0.56
9.4 96 269 231 200f 064 058 052
-10.1 113 252 219 187] 055/ 048, 0.40
-10.9 119 234 208 1771 049 043, 033
-11.6 128 201 178 150] 037, 0.28, 0.15
-12.4 197 177 160 133] -0.12| -0.23, -0.48
-13.1 501 236 224 187 -1.12| -1.24, -1.67
-13.9 792 778 756 671 -0.02 -0.05 -0.18
-14.6 626 751 642 499 0.17| 0.02| -0.25
-154 439 431 373 290 -0.02| -0.18| -051
-16.9 40 37 37 35| -0.09] -0.07| -0.15
Total 3896, 4571 4081 3510 0.15] 0.05| -0.11

X(m)

Table 5.7: Number of data points (out of 18 measured locations) whose relative errors
fall within specified error ranges for the prediction case (C).

| Jerror| | <3030 ~ 50 | 50~65 | 65 < |
Test 1 4 8 5 1
Test 3 6 4 6
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over the entire cross-shore range, (Qsp, and (Jsgy, and also shows predicted and mea-
sured total integrated LSST, (Qg,, for both Test 1 and Test 3, respectively. In both
cases, incident wave heights are nearly the same but Test 3 has longer waves than Test
1. Therefore the breaker types for the two cases are different, i.e. spilling breakers for
Test 1 and plunging breakers for Test 3. Thus, by comparing the predicted sediment
transport characteristics between Test 1 and Test 3, one can see the influence of the
breaker types on the sediment transport characteristics. As seen in Figure 5-30, the
longshore bedload transport rates are nearly the same in Test 1 and Test 3 except
around the bar-crest (X ~ —14m), where the bedload transport in Test 3 is about
100m? /year larger than in Test 1. As seen in Table 5.8, predicted Qgp, increases
by about 30% from Test 1 to Test 3. On the other hand, Test 3 (plunging breaker)
yields significantly larger suspended sediment transport rate than Test 1 around the
bar crest and the predicted ()gg, for Test 3 becomes more than twice as large as the
one for Test 1 as seen in Table 5.8. In the vicinity of the bar crest, the reference
concentration, which determines the magnitude of the suspended sediment concen-
trations, also increases from Test 1 to Test 3 (see Figures 5-17 and 5-18). However,
the increase of the reference concentration is at most 30% while the suspended sedi-
ment transport rates in this vicinity for Test 3 are about 20 times larger than those
for Test 1. We also observed that the predicted longshore current velocities are of
the same order of magnitude for Test 1 and Test 3 (Figures 4-23 and 4-24). From
these observations, one can deduce that the primary contribution to the significant
increase of the suspended sediment transport in the bar-crest vicinity for the plunging
breaker case is the increased turbulence due to the broken waves. In Test 3, most
waves abruptly break on the bar crest and therefore yield strong turbulence intensi-
ties in the water column. This strong turbulence keeps larger amounts of sediment
suspended in the water column and therefore increases the suspended sediment trans-
port rate. The present model reasonably explains the increase of suspended sediment

transport rates associated with plunging breakers.

From Table 5.8, the contributions of the suspended sediment transport to the
total LSST is about 60% for Test 1 and about 70% for Test 3. In the natural field,
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Figure 5-30: Comparisons of longshore bedload and suspended load transport rates
between Test 1 (spilling breakers, full line) and Test 3 (plunging breakers, dashed

line).

Table 5.8: Measured and predicted bed load, suspended load and total LSST in-
tegrated over the entire cross-shore region, Qspy, Qssy, and Qsy = Qspy + Qssy,

-5 X(m)

respectively. Units of the measured and predicted LSST are in (m?/year).

predictions meas. | relative

Qspy | Qssy | Wsy | Wsy error
Test 1 711 | 1105 | 1816 | 1424 0.22
Test 3 | 1043 | 2467 | 3510 | 3896 | —0.11
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waves may be much larger than those observed in the LSTF experiments while the
bottom sand grain may be as large as those applied in the experiments. Thus we
expect that the relative sediment grain size in the field becomes finer than those in
the experiment. The contribution of the suspended sediment transport to the total

LSST is therefore expected to be dominant for most field conditions.

5.7 Summary and Conclusion

Making use of the present near-shore hydrodynamics model, we extend the concep-
tual bedload sediment transport model and associated suspended sediment transport
model (Madsen, 2001) to predictions for the local sediment transport rate in the surf
zone. The surf zone hydrodynamic characteristics were accounted for in the present
sediment transport model. For instance, increase of the turbulent eddy diffusivity
due to broken waves changes the suspended sediment concentrations and the force
balance of broken waves and surface rollers affect the bottom current shear stress.

The model was applied to the LSTF experiments, in which random waves are
obliquely incident on a long, straight beach with a movable sand bed. The wave
non-linearity and the bottom slope had significant influence on the bedload sedi-
ment transport rate in the cross-shore direction while neither of these characteristics
had a significant influence on predictions of the longshore sediment transport rate
and the reference concentrations for suspended load. Accounting for multiple grain
size-classes, the predictions of the suspended sediment concentration profiles were
improved considerably over those obtained for a single grain size, D,s0.

In the cross-shore (x) direction, the predicted mean suspended sediment transport
rate agreed well with the measurements. The mean error of the predicted mean
suspended sediment transport rate was about 15%. We also investigated the cross-
shore balance of the total sediment transport on the equilibrium beach for Test 1 and
Test 3. The non-linear wave effects significantly affected the cross-shore balance of the
total sediment transport. Further model modifications and additional considerations

are required in order to explain the cross-shore balance of the sediment transport on

243



equilibrium beaches especially in the swash-zone.

In the shore-parallel (y) direction, the model predicted peaks of LSST near the
shore line both for Test 1 and Test 3 and the peak near the bar-crest for Test 3.
The model slightly under-predicted the peak LSST near the shore-line for both Test
1 and Test 3. Since the measurements contain relatively large LSST land-ward the
shore-line, i.e. above the predicted mean water level, some modifications for swash-
zone hydrodynamics, such as wave run-up and surf-beat effects, may be required to
improve the model predictions near the shore-line. Comparing the predicted LSST
for Test 1 and Test 3, the present model reasonably explained the significant increase
of the suspended sediment transport due to the plunging-type breaking waves. Al-
though the model reasonably predicted the peak LSST near the bar-crest for Test 3,
the predicted cross-shore extent of the peak was somewhat narrower than the mea-
surements and the model under-predicted the LSST around the bar trough. This
under-prediction may be improved by accounting for the lateral sediment flux due
to advections and diffusions. Finally, quantitative predictive skills of the model was
examined by comparing measured and predicted total LSST integrated over the cross-
shore transects and the local suspended sediment transport rates. The mean errors
of the predicted suspended sediment transport rates were about 30% in the longshore
(y) direction both for Test 1 and Test 3. The error of the total LSST was about 22%
for Test 1 and -11% for Test 3.

The model does not contain any empirical fitting coefficients except the resuspen-
sion parameter for the reference concentration model. The resuspension parameter
was obtained from the separate experiments for unidirectional steady flows. Consid-
ering these facts the overall predictive skills of the model are considered good in its
ability to capture both quantitative and qualitative features of longshore sediment

transport along long, straight beaches.

244



Chapter 6

Summary and Concluding Remarks

In Chapter 2, we developed a model for predictions of nearshore wave characteristics.
Numerical experiments with weakly non-linear periodic waves shoaling across a plane
sloping bottom were used to establish simple expressions relating non-linear wave
characteristics to those obtained when the waves were shoaled according to linear
wave theory. Using the obtained expressions, non-linear wave characteristics may
be reconstructed from knowledge of the characteristics of their linear equivalent. To
obtain this knowledge a model, based entirely on linear wave theory, was developed
for the evolution of wave heights as periodic waves travel from deep water up to their
breaking point and as broken waves on into the surf zone where they dissipate their
energy. Since this model for shoaling, breaking, and broken periodic waves is based
on linear theory, a simple extension to random narrow-banded spectral waves was
presented.

The excellent predictive skills of the model, in terms of its prediction of measured,
and therefore non-linear, wave heights in the vicinity of the breaking point and inside
the surf zone were demonstrated for periodic waves normally incident on a plane
beach, random waves normally incident on a barred concrete beach, and random waves
of small oblique incidence on barred movable bed beach profiles. The model was also
shown to be successful in predicting non-linear characteristics (magnitude, skewness
and asymmetry) of the near-bottom wave orbital velocity around the breaking point

and inside the surf zone.
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The present wave model is simple to apply because it is based on linear wave
theory and the concept of an equivalent linear wave. Since the equivalent linear wave
conserves energy flux the present model should be particularly well suited for the eval-
uation of radiation stresses driving long-shore and cross-shore currents. Combined
with the surface roller model, this anticipation was supported by the demonstrated
ability of the present model to accurately predict wave set-up for both periodic and
random waves. Furthermore, the model’s demonstrated ability to predict near-bottom
orbital velocity features, which are of utmost importance in evaluation of flow resis-
tance and sediment transport processes, suggests its suitability for adoption in models

for hydrodynamic and sediment transport processes in the surf zone.

The concept of the surface roller was introduced in Chapter 3 to improve predic-
tions of depth-averaged undertow velocity and wave set-up. Physical characteristics
of the surface roller were determined as functions of the surface roller energy, F,,
and an energy balance equation, which is consistent with the present wave model,
was developed to capture the spatial evolution of the surface roller energy. A simple

extension of the model to random waves was also proposed.

The validity of the model was tested against experimental data for periodic and
random waves incident on plane uniformly sloping beaches with various slopes and
random waves incident on a barred beach. Through comparisons of the predicted
wave heights, wave set-up and depth-averaged undertow, excellent agreement verified
the predictive skills of the model. It should be emphasized that no empirically fitted

coeflicient was applied in the present surface roller model.

The surface roller also had significant effects on the nearshore mean current ve-
locity. Near the breaking point, for example, growing surface roller energy yields sea-
ward acting momentum force and this force explained the sea-ward-leaning profiles of
the undertow velocity observed near the breaking point. In the shore-parallel direc-
tion, the surface roller force balances the wave radiation stress force at the breaking
point and gives a continuous longshore force across the breaking point. Some distance
inside the surf zone, surface roller energy, F,,, starts to decrease and the surface roller

increases the longshore momentum force inside the surf zone. This feature shifts the
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peak of the longshore current velocity shoreward.

In Chapter 4, we developed the near-shore mean shear current model. The near-
shore mean current fields were determined from 2DH momentum equations integrated
above the trough level and over the entire depth, respectively. Vertical profiles of
the mean shear currents are analytically determined from a simple turbulent eddy
viscosity model and a linearly varying mean shear stress obtained from the trough-
level and the bottom shear stresses. Closed form solutions for the mean current
velocity profiles were obtained and integrated to yield explicit expressions for forcings
needed in the integrated momentum equations. This feature dramatically reduces the
computational load for numerical applications of the model. The present near-shore
current model is also applicable to random waves by using external forcings and
volume fluxes for waves and surface rollers determined from our wave and surface
roller models for random wave applications. Although we here limited the model
application to long, straight beach conditions, the model concepts can be extended

to arbitrary beach profiles including along-shore variability.

In the cross-shore (x) direction, forces due to the hydrostatic pressure, wave radi-
ation stress, and the surface roller dominate the other forces such as bottom friction
shear stress and mean-current-associated convective acceleration forces. Reasonable
predictions of the wave set-up and set-down are therefore obtained from the force

balance equations without bottom shear stress.

In the shore-parallel (y) direction, in contrast, mean-current-associated convective
acceleration forces were comparable to the wave and the surface roller forces. In the
depth-integrated momentum equations, similar to Svendsen and Putrevu’s (1994)
model, the mean-current-associated forces, such as the current-current, wave-current
and surface roller-current interactions, had significant effects to disperse the longshore
current velocity and, coupled with the surface roller model, to shift the peak of
the longshore current velocity toward the shoreline. These mean-current-associated
forces dominate the lateral mixing term due to turbulence and allow us to avoid an
empirical lateral mixing to obtain smoothly varying near-shore current fields. The

present model also accounted for the mean-current associated forces in the momentum
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equations above the trough level and the trough shear stress obtained in this manner
shifted the peak of the longshore current velocity further inside the surf zone and
improved the predictive skills of the longshore current velocity profiles on the plane

beach.

The modified Madsen (1994) wave-current bottom boundary layer model was
adopted to specify the bottom boundary conditions for the near-shore current model.
The application of Madsen’s (1994) bottom boundary layer model reduces the specifi-
cation necessary to evaluate the bottom shear stress term in the momentum equations
to a specification of the bottom roughness. This bottom roughness may be known,
e.g. in laboratory experiments with fixed-bed roughness, or it may be estimated for
movable bed conditions, such as rippled or sheet flow beds, by introducing the equiv-
alent bottom roughness through empirically determined relationships as functions of
bottom sediment and flow characteristics. Some of these equivalent bottom roughness

models were reviewed and adopted for computations.

Predictive skills of the near-shore current model were examined through compar-
isons with experimental data for periodic or random waves normally or obliquely
incident on uniform plane and barred beaches. The validity of the adoption of the
modified Madsen (1994) wave-current bottom boundary layer model was confirmed
by comparing predicted depth-averaged longshore current velocity with experimental
data by Visser (1991), in which both smooth concrete and gravel beaches were sub-
jected to identical periodic incident wave conditions. The model successfully predicts
the decrease of the longshore current velocity due to the increase in bottom rough-
ness. From the model comparison with Visser’s (1991) experiments, we observed that
the longshore current velocity is sensitive to the value of the bottom roughness, ky, if
this is varied by an order of magnitude or more. Therefore, we can expect reasonable
predictions of the longshore current velocity if we know the bottom roughness within

an order of magnitude accuracy.

The model was also applied to the LSTF experiments with movable sand bed, in
which the bed conditions are in a “break-off” range, i.e. intermediate to equilibrium

(2D) ripples and sheet flow. The model with the sheet flow roughness slightly over-
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predicted the longshore current velocity while it under-estimated with ky = kyg =~
1, = the ripple height, which is about an order of magnitude larger than the sheet

flow roughness.

No parameter was fitted against any near-shore mean current data. In the en-
tire nearshore hydrodynamics models, the only parameters empirically fitted against
experimental data were (i) the breaking criteria, (u./C'),, (ii) the dissipation con-
stant for broken waves, Kj, and (iil) the equivalent bottom roughness for a movable
bed, ky (Herrmann, 2004). For the fixed bed plane beach condition, predictive skills
of the present model are still comparable to those of the best-fit classical Longuet-
Higgins’ (1970) longshore current model, in which the optimum empirical coefficients
for the lateral dispersion, N, and the bottom friction, C}, were calibrated. It should
be pointed out that the movable bed roughness was separately obtained from steady
flow experiments. Considering these facts, quantitative predictive skills of the long-
shore current model for the movable bed condition, whose mean prediction error of

the depth-averaged longshore current velocity was O (10%), are also reasonably good.

Finally in Chapter 5, we introduced the predicted near-shore hydrodynamic char-
acteristics and extended the conceptual bedload and suspended load sediment trans-
port models (Madsen, 2001) to predictions for the local sediment transport rates in
the surf zone. In this manner, the surf zone hydrodynamic characteristics were ac-
counted for in the present sediment transport model. For instance, the increase of
the turbulent eddy diffusivity due to broken waves changes the suspended sediment
concentrations and the force balance of broken waves and surface rollers affect the

bottom current shear stress.

The model was applied to the LSTF experiments. The wave non-linearity and the
bottom slope had significant influence on the bedload sediment transport rate in the
cross-shore direction while neither of these characteristics had pronounced contribu-
tions to the longshore sediment transport rates and the reference concentrations for
suspended load. Accounting for multiple grain size-classes, the predictive ability for
the suspended sediment concentration profiles was considerably improved over just

using a single grain size, Dyg.
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In the cross-shore (x) direction, the predicted mean suspended sediment transport
rate agreed well with the measured experimental data. The mean error of the pre-
dicted mean suspended sediment transport rate was about 15%. We also investigated
the cross-shore balance of the total sediment transport on the equilibrium beach for
Test 1 and Test 3. The wave non-linearity significantly affects the cross-shore balance
of the total sediment transport and further refinements of the model for appropriate
evaluations of non-linear wave effects are called for. Both for Test 1 and Test 3,
predicted shore-ward bedload transport rate due to the skewness of the non-linear
wave orbital velocity balanced with the sea-ward mean suspended sediment trans-
port rates and yielded near-zero total cross-shore sediment transport rates in the surf
zone. However, the sea-ward suspended sediment transport dominated the shore-ward
bedload sediment transport due to wave non-linearity and yielded relatively large sea-
ward transport rates near the swash zone for both Test 1 and Test 3 and near the
bar-crest for Test 3, where the model predicted considerable suspended sediment con-
centrations due to the intensive turbulence caused by plunging-type broken waves.
Therefore, in order to explain the cross-shore balance of the sediment transport on the
equilibrium beaches, we require further model modifications and additional modelings
that account for the swash-zone hydrodynamics and wave-wave suspended sediment

transport.

In the shore-parallel (y) direction, in contrast to the shore-normal (x) direction,
wave non-linearity has a negligible effect on the mean sediment transport rates be-
cause the waves propagate near-normal to the straight shore line. The model predicted
peaks of LSST near the shore line both for Test 1 and Test 3 and the peak near the
bar-crest for Test 3. The model, however, under-predicted the peak LSST near the
shore-line for both Test 1 and Test 3. Since the measurements contains relatively large
LSST land-ward the shore-line, i.e. above the predicted mean water level, the model
may require additional modeling for swash-zone hydrodynamics such as wave run-
up and surf-beat effects in order to improve the predictive skills near the shore-line.
Comparing the predicted LSST for Test 1 and Test 3, the present model successfully

explained the significant increase of the suspended sediment transport due to the
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plunging-type breaking waves. Although the model reasonably predicted the peak
LSST near the bar-crest for Test 3, the cross-shore range of the peak was slightly
narrower than shown by the measurements and the model under-predicted the LSST
around the bar-trough. This under-prediction may be improved by accounting for the
lateral sediment flux due to advections and diffusions. Finally, quantitative prediction
skills of the model were examined by comparing the model predictions with measured
total LSST integrated over the cross-shore transects and the local suspended sediment
transport rates. The mean prediction errors of suspended sediment transport rates
were 24% for Test 1 and 33% for Test 3, in which O (10%)-over-predictions of the
predicted longshore current velocity were included. Qualitative prediction skills of
the model for the cross-shore distributions of LSST were also examined by comparing
the predicted and measured local LSST at 20 cross-shore locations. Out of 20 points,
which contain 3 points above the mean water level where the model yielded zero
LSST, 12 and 10 points were within 50%-error for Test 1 and Test 3, respectively,
and 16 points were within 65%-error for both Test 1 and Test 3. The error of the total
integrated LSST was about 22% for Test 1 and -11% for Test 3. The model does not
contain any empirical fitting coefficients except the resuspension parameter for the
reference concentration model. The resuspension parameter was obtained from the
separate experiments for unidirectional steady flows. Moreover, the model assumed
sheet flow bed conditions although in the LSTF experiments the bed was covered by
rounded ripples. Considering these facts the overall predictive skills of the model are
considered good in its ability to capture both quantitative and qualitative features of

longshore sediment transport along long, straight beaches.

Based on the conceptual sediment transport model (Madsen, 2001) and the present
near-shore hydrodynamics model, we predicted both bedload and suspended load sed-
iment transport rates for the LSTF experiments, the “intermediate” scale experiments
to natural field and laboratories. In the LSTF experiments, the bed conditions are
in a “break-off” range, i.e. between equilibrium (2D) rippled bed and sheet flow.bed
conditions. The predicted contribution of the longshore suspended sediment trans-

port to the total LSST was about 60% for Test 1 and about 70% for Test 3. In the
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larger scale natural field, waves may be much larger than those observed in the LSTF
experiments while the bottom sand grain may be about the same size as those applied
in the experiments. In the field, therefore, the bed should prefominantly be the sheet
flow condition and the relative sediment grain size should become finer than those
in the LSTF experiment. The contribution of the suspended sediment transport to
the total LSST is thus expected to be dominant for most field conditions. In this
sense, we should more focus on the investigation of suspended sediment transports
in order to accurately capture the sediment transport features and resulting beach

morphology changes in the field.
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Appendix A

Derivation of Expressions for

Trough and Bottom Shear Stress

In most depth-averaged near-shore mean current models, depth-integrated momen-
tum equations are commonly applied to define the relationship between bottom shear
stress and other forces such as those due to wave radiation stresses, mean pressure,
and mean current advections. Similar to Svendsen and Putrevu’s (1994) approach,
the present model accounts for the advective momentum force associated with mean
currents. Svendsen and Putrevu (1994) showed, from their numerical application,
that this feature reasonably explains distributions of the longshore current velocity in
the cross-shore direction without introducing any empirical lateral eddy viscosity or
dispersion coefficient. The most significant difference between the present derivations
and those of Svendsen and Putrevu (1994) is that the present model also evaluates the
mean shear stress at the wave trough level from the momentum equations integrated

above the wave trough.

A.1 Pressure Force

The vertical momentum equation in the fluid reads

B_w N ouw N ovw N ow?
P\ o ox oy 0z
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0 0Ty,  OTy,  OTy,
ALl - Y

Oz Ox Oy Oz (A1)

With the vertical axis, z, set to zero, i.e., 2 = 0 at the still water level, integrating
(A.1) from wave trough level, z = z,, to the free surface, z = 7 yields, with application

of Leibnitz’ rule,

a a m o m
p la . wdz+£/2tr uwdz—l—a—y/zﬂ vwdz]
I I I
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where subscripts,  and tr, denote values at the free surface and at trough level,
respectively. Terms in { } = 0 by virtue of the kinematic free surface boundary
condition and p, is air pressure at the free surface. Rearranging (A.2) yields the

pressure at the trough level

Dir = Pa+pg(n— z)

a [ o
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A.2 Some simplifications

We separate the fluid velocity into mean and wave components according to

(w,v,w) = (U, V,W) + (4, 0,0) (A.4)
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In terms of order of magnitude, we allow the horizontal mean current velocity to be

comparable to wave orbital velocities, i.e.

OWU)=0(V)=0 () =0 (v) (A.5)

In the vertical direction, however, we assume the horizontal length-scale for waves
(Ly) to be considerably smaller than that of mean currents (L,,), and therefore

assume

O(W) = O(Uh/Im)
é—:() (it Ly) = é—:() (@) < O (@) (A.6)

12

Since we are concerned with near-shore waters the waves approach long waves and
W is already quite small. Thus O (W) < O (@) is sufficient to support the neglect of

vertical mean current components from the dynamic pressure.

Viscous stresses are assumed to be exclusively due to mean current components,

for instance,

oU

and, as customary, normal viscous stresses are neglected, i.e.

since these appear together with and are dominated by hydrostatic pressures.

Since W is assumed to be small, shear stresses due to horizontal variance of W

are also small, i.e.,
0Ty, 0Ty, 07,4

ox Oy 0z

(A.9)

Much of our attention will focus on near-surface conditions, i.e. z > z;,. In this
proximity of the surface we assume wave orbital velocities and horizontal mean current

velocities to be sufficiently accurately represented by a ”surface value” independent
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of z, ie.

(U, 0, W) =~ (s, Vs, Ws) (z > z4r) (A.10)

and

UV) = ULV (22 2r) (A11)

Finally, we assume wave motions to be simply represented by linear wave theory, i.e.,

Ug Ug COS P
Vg Vg COS
= (A.12)
W W, sin @
d] a cos @

where ¢ = k,x + kyy — wt is the wave phase, a = H/2 is the wave amplitude, and s,
U, and W, are amplitudes of wave orbital velocities in the respective directions. The
free surface elevation, 7, and the trough level, 2., in (A.3) are therefore expressed
as 2y = 7] — a, which is not a function of time as already anticipated in (A.2), and

1 =17 + acos ¢, where 7] is the mean water level, i.e. the set-up.

A.3 Mean Pressure

Invoking the assumptions stated in the previous section, (A.3) may be simplified to

read

P = Patpg(n— zu)
o m . a m .
+p [E Wedz + — / (Us + 1) Wsdz

Zitr 83’; Ztr

+8% /77 (Vs + 05) Wsdz — wQ]

+pil ((Us +ity) %’ZT + (Vs + ) 8Z”> (A.13)
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where the integrations are readily carried out since the integrands, by virtue of (A.10)

and (A.11), are assumed constant, e.g.

n
/ Wsdz = Ws (N — 2¢r)
Ztr

= wsasiny (1 + cosp) (A.14)

Mean pressure at the trough level, p,., is determined by introducing velocity

components (A.12) into (A.13) and time-averaging to obtain

Der = Pa + pg (1 — 2er) — p02 (A.15)

Mean pressure force above the trough level is determined from

P, = /77 pdz (A.16)

Substituting the coordinate elevation 2z, = 2z in (A.13) and use of (A.10) and (A.11),

enable simple evaluations of the integrations in (A.16) and result in

S
I
3
Q
—
=
|
N
oy
g
+
—
=
|
N
oy
g

+

+

+
NI NI D
EEEENE

— aw? (A.17)

3
)
Q
+
|
+

in which the terms represent atmospheric pressure force, mean wave-associated pres-
sure force (E = pga®/2 is the wave energy), hydrostatic pressure force, and dynamic

pressure force.
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A.4 Trough Shear Stress

Shear stress at the trough level in the cross-shore direction, Ty, .5, is determined by

integrating the horizontal momentum equation,

Ou N ou? N ouv N ouw
P\t ™ ox oy 0z
Ip N OTxa N 0Ty N 0T,

= — A.18
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where the kinematic free surface boundary condition was invoked. In (A.19), 74,
represents the shear stress at the surface, e.g. due to winds, and 7g,,is an excess
shear force due to the surface roller acting at the trough, determined in the following
section. Time-averaging (A.19) over the wave period, with the assumption of vertical
uniformity for horizontal velocity components, yields the mean current shear stress

at the trough level, 7.5, = T4y .4, as

9 o7 Oz
csx __Ps orm — Dir——
T ox TP or pe ox

o m o ]
—p la_a:/z”uzdz_‘_pa_y/m usvsdz]
_mazﬁ_ uv%
psaaj pssay

+ P U Wip

nor,,
+ " —gZ dZ + Tax + Tsrz (A20)

258



in which wuy, ~ us and wy, are velocity components at the trough to be determined
in the following section. Introducing (A.10) and (A.11) simplifies the integrations in
(A.20) with substitution of (A.15) and (A.17),

B 0 E  pga® =
Teszy = o7 (paa—l— 5 + 5 paws?
8 (7_] — Ztr) —5 3th
+PaT - (pga - Pws) o
—p (@ + U (0= 2))
0
3, ((as +Us) (0s + V5) (0 — 20r))
— 0z 0z
= 2 tr ~ tr
—p (ug + Us) Ox - p (usvs + Us‘/;) 8y
+put7’wt7’
‘I‘a% + Taz + Tsra (A21)

Finally, introducing (A.12) yields the complete expressions for the trough shear stress,

opa 07
ar "%z

o (FE pa dw?  pw? Of
@) e

Teszg = —Q

—p% (at,Uy) ga% (atsVs 4 av Us)

+pU Wi

—I—a% + Tog + 7T, (A.22)
By ar T Tsra :

A.5 Momentum forces due to surface roller

Inside the surf zone, we account for the excess shear force due to the surface roller.

We first assume that the mean fluid velocities in the surface roller are affected by the
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mean current velocity near the surface, i.e.
(tsr,Vsr) = (Ccos@ + Us, Csinf + V) (A.23)

with 0 denoting the angle of incidence of the waves. Time-averaged momentum flux
components due to the roller are then determined, by use of the volume flux of the

roller, (qsrzs @sry) = Ssr/T (cosB,sin B) to be

Msr,:c:c Msr,y:c
Msr,:cy Msr,yy

RCECC_I_US Srx R CC_I_US ST
— 5 q y Qsry (A.24)

R:cy + %qgrm Ryy + %qgry

where Ry, Ry = Ry, and R, are momentum flux components due to pure surface
roller given by (4.10) and (4.11) in Chapter 4. The trough-level shear stress due to
the roller, 75,; (7 = 1,2), is determined from the change of these mean momentum

fluxes, i.e.
8Ms7’,:cj 8]\457’,yj
Terj = — -
/ ox oy

(A.25)

A.6 Mean vertical momentum flux at trough level

The vertical velocity at the trough level, wy,, is determined from the continuity equa-

tion with application of Leibnitz’ rule as

0 n 0 n
Wy = U,SdZ + Qora | + Usdz + Qsr
8&7 Ztpr 8y Ztr Y

_I_U%_I_U 82’”_‘_@
* Or "oy Ot

(A.26)

Multiplying (A.26) by us = us and time-averaging yield the mean vertical momentum

transfer force in (A.22),

____ 8(]51: 2 ﬁ'g aztr
PUp Wy = P (Us 837 + (Us + ? 837
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aqs ﬁ's@s aztr
Us— UsVs
+p( Oy +( T ) 3y>

- [ O0qua | Ouy
—I—pus( p + 8y> (A.27)

with mean wave volume flux and the total volume flux above the trough level denoting

Quz = als/2 and ¢s = Usa + Qo + Gsra, respectively.

A.7 Mean Trough Shear Stress

Substitution of (A.27) into (A.22) we obtain, after some algebraic manipulations,

simplified expressions for the trough-level mean shear component,

Tesg = Taz — 4

or P9 ppte
0 <E> @81@? pu??@
2 Ox 2 Ox
oU, alUs\ Ot

T

2 ox
OTya 0

oy oy

oU aV,\ 0u
— —= 5 5 A2
plqsy8y+(qu+ 2>8y] (A.28)

where R,, and R,, = R,, are momentum flux components of the surface roller

“+a

without mean current as derived in (4.10) and (4.11). The mean trough shear stress
in the y-direction, 7., is determined by replacing x by vy, (u,U) by (0,V) and cos @
by sin# and vice versa in (A.28).

A.8 Mean Bottom Shear Stress

To obtain an expression for the bottom shear stress, we start from (A.18) and integrate

it from the bottom, z = —hg to the trough level, z = 2z, = 77 — a where hyg is the still
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water depth.

8 Ztr 8 Ztr
- 2 —_ a0
P l@a: /ho uidz oy /ho uvdz]

P tr tr 8&7 tr ay tr
Ohg N Ohg N
—pU Up—— Vp—— w
PUp b O b ay b
a [ Ozer  _ Ohyg
- d , 0
or J- pz—l—pt or +pb8a¢
Ztr 8Tym
et e, (A.29)

Again, { } = 0 from the kinematic bottom boundary condition and combining (A.29)
with (A.20) determines the bottom shear stress

Tebe = Taz + Tora

) o Oho
G pdz)”“a S
O § e
— 2 2
2T 2 ]
0 n o Ztr
—p [ ay/z” usvVsdz + pa—y /ho uvdz]
+ 8@“3 (A.30)

—ho

Introducing (A.4), (A.15) and (A.17) into (A.30) yields

Tebe = Taz + Tsra

= (QuyUs + quaV5) (A.31)
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where

b
Spz = p/ u2 dz—{— — (A.32)
ho 2
Sye = Suy=p / Todz (A.33)
ho
b
Syy = p/ 122 dz—{— 5l (A.34)
ho

are the well-known wave radiation stresses and h = hg 4+ 77 is a mean water depth.
According to Mei (1989), the sixth term in (A.31), pwbaho/aat is negligible for a
gently sloping bottom.

Again, the bottom shear stress in the y-direction, 7., is determined by replacing

x by y, (4,U) by (0,V) and cosf by sinf and vice versa in (A.31).

A.9 Simplifications for Depth-Integrated Momen-

tum Equations

To simplify the integrations in (A.31), we follow the similar approach to Svendsen
and Putrevu (1994). We first separate the mean current velocity below the trough

level into two components, i.e.

(U, V) = (U, Vo) + (U, V") (A.35)
where
Wo Vo) = [ (W) dz = - () (4.30)

are the “depth-averaged” mean current velocity components over the wave trough
depth, hy = ho+17 — a, and (U’, V') are the vertical distribution of the mean current
departures from their depth-averaged values, and g, and g, are the total volume
fluxes below the trough in the x and ¥y directions, respectively.

Svendsen and Putrevu (1994) assumed O (Up) ~ O (U’) < O (i) in the z-direction
and neglected the second order terms of Uy and U’. We also assume O (U’) < O (1),
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and neglect the second order terms of (U’). In contrast to their approach, we allow
O (Up) ~ O (V) ~ O (&) and keep all the second order terms of these mean current
velocities. Terms of order UZ can be non-trivial where abrupt changes of the current
field may be expected, such as around the breaking point for periodic waves.

Introducing these expressions into (A.31) simplifies 7,5, to

opa . Of
ar "o

0 0 — Ohg
Tase gt Mgy

Tebe = Tax — h

0

_pa ((qs:c + qw:c) Us + quUO)
0 0

—8—y5y$ — 8—yRym

_pa_y (QSyUs + Qw:cv; + QbyUO)

T OTys
Iz g A.
+ [ e (A.37)

The turbulent viscous term, 7., is also approximately determined from depth-

averaged velocity gradients, 1.e.

PlVts (83‘;3 + 88_2]/5) (Z Z Ztr)

Tey = Tygp =
vy | AU
PVt (—3; + —ayo) (2 < z4r)

(A.38)
with vy, eddy viscosity at the trough level, and vy, depth-averaged eddy viscosity
below the trough level, obtained from the turbulent eddy viscosity model discussed
in Section 4.4.2.

For a long-straight beach condition, i.e. 9/0y = 0, the total volume flux in z-
direction below the trough, g, is specified by requiring zero total volume flux in the

z-direction, i.e. gy = —@sz and T, may be further simplified.
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Appendix B

Model Application for Numerical

Computations

This Appendix discusses the methodologies for application of the near-shore hydro-
dynamics model to numerical computations. The numerical model first computes the
cross-shore distributions of wave and surface roller characteristics. Predicted wave
and surface roller characteristics are then used to compute the near-shore mean cur-

rent.

B.1 Waves and Surface Rollers

Since the present model is based entirely on the equivalent linear wave, it is simple to
apply. We first discretize the cross-shore beach profiles with even horizontal intervals,
Az, and specify the incident wave conditions at the off-shore boundary.

The numerical computation starts at the off-shore grid point where both water
depth and wave conditions are known. Assuming that the water depth at the off-
shore boundary is sufficiently deep, we take both mean water level and surface roller
energy to be zero at the off-shore boundary. Given all the variables at i-th grid
point, linear wave theory determines the wave shoaling and refraction at the adjacent
shoreward (7 + 1)-th grid point for non-breaking periodic wave conditions. Once the

wave hits the breaking point, whose criteria is determined by (2.20), energy dissipation
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equation (2.21) determines the equivalent linear wave height in the surf zone. For
random waves, (2.27) is applied instead of (2.21) at all the grid points because a
certain fraction of waves are assumed always broken even in the deep water. Similarly,
either (3.13) or (3.16) is applied to determine the surface roller energy respectively
for periodic or random wave conditions while wave characteristics are computed.
Once wave and surface roller characteristics at (i+1)-th grid point are determined,
(3.10) determines the elevation of the mean water level at (i + 1)-th grid point. Note
that, when computing the wave and surface roller conditions, we require the mean
water depth, i.e. the mean water level at (i + 1)-th grid point to estimate the wave
phase velocity and group velocity from linear wave dispersion relationship. Since
the mean water level is not yet known at (i + 1)-th grid point, we require numerical
iteration to determine wave and surface roller characteristics and mean water level.
In the numerical code, we first compute the wave and surface roller characteristics by
initially taking 7,1 = 7;. From the obtained wave and surface roller characteristics
at (i + 1)-th grid point, (3.10) is used to renew the prediction of ;1. Using newly
determined 7j;,1, wave and surface roller characteristics are repeatedly computed.
Since the mean water elevation is relatively small compared to the still water depth,
this numerical computation converges within a few numerical iterations. As shown
in Chapter 4, the influence of the bottom shear stress on the wave setup determined
in (3.10) is negligibly small. Thus, for computational efficiency, the numerical code
neglects the bottom shear stress in (5.15) when determining the mean water level.
Following the above procedures, equivalent linear wave and surface roller charac-
teristics are obtained and these characteristics are readily transformed to the non-

linear wave characteristics from (2.2) through (2.6).

B.1.1 Effective Bottom Slope

As discussed in Chapters 2 and 3, one of the essential improvements of the present
wave and surface roller models is that they account for the influence of the bottom
slope. For application of the model to natural beaches with arbitrary profiles, we need

to consider the appropriate local bottom slopes for evaluation of wave and surface
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roller characteristics. For example, a natural movable bed beach may contain small
scale geometry, such as ripples, which should affect the bottom roughness but not have
significant influence on the local wave characteristics such as breaking wave dissipation
rates and asymmetry and skewness of the near-bottom wave orbital velocity profiles.
The beach profile may often be barred, i.e., we may have increasing water depth in
the shoreward direction over a portion of the surf zone while our model is originally
developed only for decreasing water depth, i.e., for a positive bottom slope throughout
the surf zone. On an arbitrary beach profile, in which the local bottom slopes vary
from place to place, it may be more realistic to expect that the characteristics of waves
reaching a given depth reflect their history, i.e., the average slope of the bottom over

which they have progressed prior to arrival in the given depth.

Accounting for these conceptual ideas, the numerical model determines the effec-
tive bottom slope through the following procedures: (i) remove the effect of ripples
by taking a running average of the discretized depth data; (ii) make imaginary beach
profile (A) by drawing a horizontal line from the bar-crest to the shoreward until the
line hits the actual beach profile (dashed straight line A in Figure B-1); (iii) make
another imaginary beach profile (B) by drawing a horizontal line from the bar-trough
to the seaward until the line hits the actual beach profile (dashed straight line B in
Figure B-1); (iv) define the effective bottom slopes for both beach profiles (A) and
(B) as the average slope over some distance, Az, seaward of the point of interest;
and (v) if the effective bottom slopes for beach profiles (A) and (B) differ, take the
maximum of the two. Figure B-1 illustrates the concept of this evaluation of the
effective bottom slopes. The length of Ax;, may be scaled by local wave length and
therefore vary with local depth. In this study, we take Axzy ~ 0.5L, with L, the local
wave length. Note that this effective bottom slope is used only for the wave and sur-
face roller model. The nearshore current model does not contain the explicit effect of
the bottom slope. In the sediment transport model, the bottom slope for the bedload
sediment transport model should be scaled by grain diameters. The bottom slope
for the sediment transport model is therefore determined by the smallest horizontal

interval, Az, from the smoothed depth data, i.e. after removal of ripple effects.
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point of interest
Po = max (B, B)

Figure B-1: Concept of the effective bottom slope
B.2 Nearshore Mean Current

Provided spatial distributions of wave and surface roller characteristics are already
known, the near-shore mean current model determines unknown variables, (T.ss, Tesy)
(Tebars Tevy), T, and (@va, @y ). All other variables can be determined as functions of these
seven variables. In order to specify these seven variables, the following seven equations
are applied: bottom boundary conditions, (4.29), momentum equations above the
trough level, (4.33) and (4.41), momentum equations for the entire depth, (4.49)
and (4.50). Some of the terms in the momentum equations, (4.33) and (4.49), are
canceled out and further simplified formulae are applied in the numerical applications.
Under the long-straight beach condition, 9/dy = 0, ¢y, is determined from mass

conservation,

Qo = —Qsg = — (qw:c + Gsrx + aUs) (Bl)

Numerical iteration is needed to solve these variables because non-linear advection
terms are included in the momentum equations.

In order to obtain a steady state solution, we start from quiescence and ramp up
the wave and surface roller forcings. During this initial stage we employ the unsteady

form of (4.50) and solve

Ogy

P at = T(t) (Fbwy‘l—Fsry) +Fbmy+Fbwmy
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+Fs7’my + Fbvy — Teby (B2)

where ¢, = @y +aVs+7 (1) (quy + gsry) 1s the total mean volume flux in the alongshore
y-direction. Note that I}, + Fy,, is a known variable obtained from wave and surface
roller models. 7 () is a ramp-up function that smoothly increases from zero to unity
as ! increases. For example, r (1) may be defined as

, () = 0.5 {1 — cos (;—f)} 0<t<T, (B.3)

1 T, <1

Ramp-up period, T,, is set to be five wave periods in the numerical application.
Starting from initial conditions of zero mean current, numerical computation of (B.2)
is repeated until steady state condition, 9/0t = 0 is obtained after r () becomes unity.
In the steady state, i.e., d¢,/0t = 0 and r ({) = 1, (B.2) becomes identical to (4.50).
To ensure computational stability, r (¢) is also applied to known variables, g,; and
¢srj In the momentum equations, (4.33) and (B.2), and continuity equation, (B.1).
Although adoption of a smaller time step, Af, accomodates more stable numerical
computations, the smaller Af requires a larger number of iteration times to ensure
the model to be sufficiently converged. In this sense, one should choose as large a
At as possible while keeping computations stable. The magnitude of At should be
related to the horizontal grid interval, Ax. The upper limit of At may be determined
by Az /At > max (’U’ + \/g_h) Here, U is a mean current velocity and 1/gh is a wave
phase velocity in the shallow water. Because |U| is an unknown variable, but often
smaller than the wave phase velocity, Az/At > /ghpax /2, i.e. At < 2A%/v/Ghmax
may be the safer approximation for determination of At with hp,,,, the maximum
water depth in the system. The horizontal resolution, Az, may be scaled by the wave
length. In the LSTF experiment Test 1, for example, the length scale of Ax is roughly

Az ~ Ly/50. Finally, the numerical scheme is summarized as follows.

1. Set gy = Vo=V, =U, =7 = 0.
2. Evaluate gy, from (B.1)
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3. Evaluate (T,sz, Tesy) from momentum equations above the trough level, (4.33)

and (4.41)

4. Based on old (Tups, Teny), evaluate bottom boundary layer thickness, 8, from

(4.24)
5. Evaluate (7., Tepy) from bottom boundary condition, (4.29)
6. Evaluate (Us, V;) from (4.27) with 7.5 and 7., obtained in steps (3) and (4)
7. Compute 7 from (4.49)
8. Obtain ¢, = g, + (0g,/0l) At where (Jq,/0t) is obtained from (B.2)

new

9. Take g, = g,

(1—qpee/q,) T/A <
€ is obtained over the entire computational area with the convergence criterion,

¢ = 0.001.

and return to step (2) until steady state,

B.2.1 Boundary Conditions

In order to solve the momentum equation (B.2) numerically, we require two boundary

conditions, one at the off-shore boundary and the other at the on-shore boundary.

Off-Shore Boundary Condition

At the off-shore boundary, we assume that all variables are uniform in the cross-shore

(x) direction, i.e. 3/0x =0 and take

Xisfl = Xz (B4)

where X denotes variables such as U, V, Uy, Vs, and g, and is is the grid number at
the off-shore boundary. In order to assure the assumption of 9/9x = 0, input depth
data near the off-shore boundary should also be uniform or sufficiently large so that

the near-shore current becomes negligibly small.
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On-Shore Boundary Condition

In order to avoid the unstable computation, the numerical code stops computation of
(B.2) at i = ie near the shore-line where the local trough depth, hy,, becomes smaller
than twice the local wave-current bottom boundary layer thickness, i.e. hy < 26.
We simply assume that the longshore current velocity becomes zero at the mean
shore-line where the mean water depth becomes zero and and the longshore current
velocioty at i = ie 4 1, is linearly interporated by

¥, > (ho + ﬁ)ie+1
‘/ie+1 = Vie=7; N
(ho + n)ie

with local still water depth, hg.
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Appendix C

Predictions of Ripple Geometry

C.1 Introduction

As discussed in Section 4.6.3, an ability to predict the ripple geometry is essential
to determine the movable bed roughness of a rippled bed. Geometrical character-
istics of sand ripples generated under waves have been studied both in laboratory
experiments and through field observations (e.g., Inman, 1957; Keneddy and Falcon,
1965; Carstens et al., 1969; Mogridge and Kamphuis, 1972; Dingler, 1974; Miller and
Komer, 1980; Nielsen, 1981; Madsen and Rosengaus, 1988; Sato and Horikawa, 1988;
Traykovski et al., 1999; Li et al., 1998; Styles and Glenn, 2002). These observations
indicate that ripple height and length immediately reach their equilibrium stage as
wave stress increases and initiates the motion of sand grains. In this equilibrium
stage, ripple length, A, is roughly proportional to the near-bottom wave orbital di-
ameter and ripple steepness, 7,/), with ripple height, 7,, is at the maximum and
stays roughly constant. When the wave stress is further increased, ripple geometry
enters a “breakoff” range where the ripple steepness starts to decrease and eventu-
ally vanishes. In the breakoff range, ripple length is roughly proportional to bottom
sediment diameter and stays nearly constant while the ripple height decreases as the
wave stress increases. These extensive observational studies of ripple geometries have
yielded a number of models for predictions of ripple geometry (e.g. Nielsen, 1981;
Grant and Madsen, 1982; Wikramanayake and Madsen, 1991; Mogridge et al., 1994;
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Wiberg and Harris, 1994; Li et al., 1996; Traykovski et al., 1999; Styles and Glenn,
2002).

Some of these models are based on the laboratory experiment for periodic waves
and others are developed from laboratory or field data for random waves. From
a practical point of view, we focus on the models applicable to natural field, i.e.
random wave, conditions. According to Nielsen (1981) and Wikramanayake and
Madsen (1991), the ripples generated by random waves tends to become less steep and
have rounder crests compared with ripples generated by periodic waves. While most
models are based on pure wave conditions, Li and Amos (1998) suggested from their
field observations that the shear stress due to mean current should also significantly
affect the ripple geometry. In the surf zone, extensive turbulence due to broken
waves and wave-induced nearshore currents may also affect ripple characteristics. In
this Appendix, we first summarize existing models for prediction of ripple geometry
under random wave conditions and compare these models with LSTF experimental

data obtained by Wang, et al. (2002).

C.2 Existing Models

Nielsen (1992), on the basis of the field measurements obtained by Inman (1957)
and Dingler (1974), proposed the following empirical formulae for predictions of ripple
height, n,, and length, A, generated by random waves.

693 — 0.37In®
NAyms = C.1
f Ao, P (1000+0.751n7\11> (G1)
ne/A = 0.342 — 0.34¢92° (C.2)
N/ Apm,s = 2181 for ¥ > 10 (C.3)

Here Apns = Upms/w is bottom excursion amplitude with wp,,s, amplitude of the near-
bottom wave orbital velocity and w = 27/T, wave frequency. Both Apps and upms

represent significant wave conditions for random waves, i.e. Upm, s \/éubmyrms. The
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Mobility number, ¥, introduced in (C.1) and (C.3), is defined by

g o Vs C4
_(s—l)gd (C4)

and the Shields Parameter, 19 5, is determined by

1 2
§f2~5ubm,s

= 2770 Om.S C.5
oo = A l200ime ©3)
with Jonson’s friction factor (Schwart, 1974).
25D 0.194
fas = exp (5.213 ( i 50) — 5.977) (C.6)

Wikramanayake and Madsen (1991) pointed out that the measured ripple
geometries contain significant scatter compared with those obtained in laboratory
experiments but have relatively strong correlations with a following non-dimensional

parameter,

;m’ms Qféwlj A m,rms& 2
7 = Ymrms _ 2w (Aimrmstd) (1)
S,  Dl(s—1)gD]

/

mrms, 18 based on root-mean-square wave height

where maximum Shields parameter, ¢
and ’ denotes the value for skin shear friction, i.e., f/ is determined from (4.26) with
equivalent bottom roughness, ki, = Dso. S, is a sediment-fluid parameter,

Sy = % (s—1)gD (C.8)

Based on the field data presented by Inman (1957), Dingler (1974) and Nielsen (1984),
Wikramanayake and Madsen (1991) proposed

e 0.0182°%%  0.016 < Z < 0.012
- (C.9)
Aprms 0.0007Z ' 0.012 < Z < 0.18
e 0.152-°0% (0016 < Z < 0.0158
o _ (C.10)
A 0.0105Z%% 0.0158 < X < 0.18
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for predictions of ripple geometry in the field with random waves.

Alternately, Wikramanayake and Madsen (1991) also proposed the following em-
pirical formulae based on the measurements of geometry of ripples generated by pe-

riodic waves in laboratory experiments.

N

= 0.27 - 0.33,/w!, (C.11)
Abm
% — 0.16 - 0.36 («/,)>° (C.12)

Comparing (C.12) with experimental data both for regular and random waves in the
same experimental facilities (a wave tunnel, Sato and Horikawa, 1988; a wave flume,
Rosengaus, 1987, and Mathisen, 1989), Wikramanayake and Madsen (1991) pointed
out that if one were to represent the Shields Parameter for random waves by its
root-mean-square value, the breakoff limit of the Shields number for random waves,
where ripple steepness significantly decreases, is about a half of that for periodic

waves. From this observation, (C.11) and (C.12) may be extended to random waves

/
m,rms:*

by substituting Shields parameter for significant waves because 1, , ~ 2¢

Wiberg and Harris (1994) suggested that geometric ripple characteristics are
classified into orbital, anorbital, and suborbital ripples depending on the relationship
between sediment diameter, DD, and the diameter of the orbital motion just above the
bed defined by dg = H/sinh kh in linear theory. Here wave height, H, is represented
by the significant wave height for a random sea. The measured data, Wiberg and
Harris (1994) applied in their modeling, are Carstens et al. (1969), Mogridge and
Kamphuis (1972), Dingler (1974), and Kennedy and Falcon (1965) for periodic waves
in laboratory experiments and Inman (1957) and Dingler (1974) for field observations
and therefore for random waves. Based on these measured data, Wiberg and Harris

(1994) proposed that the length and the height of the orbital ripples, A, and 1o,

are expressed as

)\orb — 062d0 (013)
norb/)\orb = 0.17 (014)
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Length of the anorbital ripples, Agno, in contrast to orbital ripples, is independent

of dg but is proportional to sediment grain diameter, D, i.e.
Aano = 935D (C.15)

Anorbital ripple height, 14y, is then determined by numerically solving the following

empirical formula obtained from field data.

Nan 0.17 do/Nano < 10
Aano exp [—0.095 <1n f—o)Q +0.4421n 4 — 298| dg/1jan, > 10

ano

(C.16)

If do/Nano, determined in this manner, is smaller than 20, i.e. do/Nen, < 20, the
predicted ripples are considered as orbital ripples whose geometric characteristics
are determined by (C.13) and (C.14). If do/nan > 100, then the predicted ripples
are considered as anorbital ripples whose geometric characteristics are defined by
(C.15) and (C.16). If 20 < do/"ano < 100, then the predicted ripples are classified in
suborbital ripples and their ripple length, Ag,;, becomes Ao < Agup < Aprp. Wiberg
and Harris proposed the following weighted geometric average of the two to determine

)\sub:

In (do/Nano) — In 100
Aaup = In Aorp — 10 Aano) + 1 g C.17
' eXpl( 20— 1o ) (%A 10 Awno) FIn (€17)

The height of suborbital ripple, 7g, is also determined from (C.16) by replacing 74y,
by Nsup and Agno by Agup. Note that (C.16) must be solved by numerical iteration,

which may affect computational model efficiency.

Li et al. (1996) applied Nielsen (1981) and Grant and Madsen (1982) models
to the field data observed at Duck, North Carolina, and the Scotian Shelf where
both waves and mean currents were present. Comparing predicted ripple geometries
with observations, Li et al. (1996) pointed out that Nielsen’s (1981) model tends to
under-predict while Grant and Madsen (1982) over-predicts the ripple heights. Li
et al. (1996) re-calibrated the Grant and Madsen (1982) model against these field
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measurements and proposed

0.1015,%% 1< S, < S,p
nT/Abm,s = (018)
0.356S5, 1%  S,p< S,

4.9559:04 1<S, <S5
Ay = (C.19)
3.035,°6S, S,5 < S,

where S, = ¥, 5/t 1s a ratio of maximum significant Shields Parameter, ), s, and
critical Shields Parameter, .., S,z = 1.85%¢ is the breakoff limit of S,. Li et al.
(1998) analyzed the measured ripple data obtained from Sable Island Bank, Scotian
Shelf and showed that the geometric characteristics are correlated with ratio of current

shear stress and the wave shear stress.

Styles and Glenn (2002) pointed out that the Wikramanayake and Madsen
(1991) model is physically inconsistent with the observed ripple geometric charac-
teristics in that the predicted ripple height is independent of near-bottom excursion
amplitude, A;,,, while a number of observations suggest that ripple geometry is scaled
by Apm. Styles and Glenn (2002) re-calibrated Wikramanayake and Madsen’s (1991)
model by adding LEO-15 data presented by Traykovski et al. (1999) to the field
data used by Wikramanayake and Madsen (1991) and Wiberg and Harris (1994) and

proposed
0, 0.30X 7939 X <2
1 = (C.20)
bm,s 0.45X 799 X >2
A 1.96X 0% X <2
1 = (C.21)
bm,s 2.71X79% X >2
Q77“L7"77"L5 4 A T, TINS 2
X = _ A Amrmsw) (C.22)

S, Dl(s—1)gDJ"?

Note that significant excursion amplitude, A, s, is applied in (C.20) and (C.21)
while the original Wikramanayake and Madsen (1991) model uses Ay rms. In (C.22),

U, nrms 18 @ mobility number defined in (C.4) with u, represented by root-mean-square
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wave conditions and S, is a fluid-sediment parameter determined in (C.8).

C.3 Model Comparisons

We compare these empirical models with LSTF experimental data presented by Wang
et al. (2002). Experimental conditions are summarized in Section 4.6.3. In the
movable bed cases, Test 1 and Test 3, Wang et al. (2002) obtained the bottom bed
elevations along cross-shore transects at intervals of bmm. We first obtained the
smoothed bottom profile by locally averaging the measurements over the length scale
of ripple length (~ O (10cm)). Displacements of the bed due to ripple forms were
then determined from the fluctuations of the original 5bmm-spaced elevations around
the smoothed bottom profile. Height and length of each ripple are then defined
from the obtained displacement data by zero-up-cross method. According to visual
observations, the horizontal directions of the short-crested ripples were non-uniformly
distributed. For this reason the ripple length estimated as an distance in the cross-
shore direction will always be larger than the actual length while we can still expect
reasonable estimations of ripple heights. Figures C-1 and C-2 show the shore-ward
distributions of measured ripple heights, steepness and corresponding water depths for
Test 1 and Test 3, respectively. In these Figures, solid circles are measurements and
dashed lines are the locally averaged measured ripple geometry, which was applied to
compute ripple roughness in Section 4.6.3. As seen in the Figures, ripple height and
steepness tend to be smaller near the shoreline both in Test 1 and Test 3. In Test 3
(Figure C-2), ripple heights and steepness also decrease around the bar-crest where
most waves start to break.

Figures C-3 and C-4 show comparisons of predicted and measured ripple heights
and steepness as a function of non-dimensional parameter, Z = 1, ../ S, defined
by (C.7). To determine corresponding Z-value for each measured ripple, we applied
predicted local near-bottom wave orbital velocity by interpolating the predictions
obtained from the present wave model. In Section 2, we confirmed that our wave

model yields reasonable predictions of the near-bottom wave orbital velocity and
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Figure C-1: Cross-shore distributions of measured ripple height, 7,, steepness, 71, /A,
and water depth. Measurements (Test 1: spilling breakers) by Wang et al. (2002)
(full circles) and local average (dashed lines).
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Figure C-2: Cross-shore distributions of measured ripple height, 7,, steepness, 71, /A,
and water depth. Measurements (Test 3; plunging breakers) by Wang et al. (2002)
(full circles) and local average (dashed lines).
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therefore we can expect the reasonable estimation of 7. Ripple geometries predicted
by each predictive model are computed through the following procedures: (1) fix
the wave period (T" = 1.5s for Test 1 and T" = 3.0s for Test 3) and the sediment
diameter (D, = 0.167mm) for each experimental case, Test 1 and Test 3; (2) take
arbitrary up ,ms in certain broad range so that we can obtain wide-range of Z-values;
(3) determine Z from given w yms, 1', and D,,; and (4) obtain the predictions of ripple
geometry from each model from given 4y »ms, T, and D,,. Note that single Z-value and
the corresponding ripple geometry predictions are always determined once  rms, 1,
and D,, are determined. In the figure, triangles are the measurements outside the surf
zone (X < —14m in Figures C-1 and C-2), open circles are the measurement near the
shoreline (X > —5m) and solid circles are the rest of measurements. Abbreviations
of each predictive model shown in the Figures are WMO1F (Wikramanayake and
Madsen, 1991, for field), WM91L (Wikramanayake and Madsen, 1991, laboratory),
SG02 (Styles and Glenn, 2002), L96 (Li, et al., 1996), N81 (Nielsen, 1981), and
WHO94 (Wiberg and Harris, 1994), respectively. The sheet flow limit indicated in the
figure was determined from Li and Amos (1999) as a function of sediment diameter
(Vprms = 0.42 and Z,, = o, /S« =~ 0.23, in this particular experiment). As

seen in Figures C-3 and C-4, all predictive models exhibit decreasing ripple heights

/

w.rms i the range where measured ripples are plotted. This feature

with increasing
supports our contention in Section 4.6.3 that ripples both in Test 1 and Test 3 are in
the breakoff range. Most models still predict relatively large ripple heights even in the
sheet flow range indicated in the figure. Ripple heights predicted by WMO91L and N81
vanish around the sheet flow limit but N81 tends to under-predict the ripple height
comparing with the measurements and other models. Measured data outside the surf
zone (open triangles) agree well with most predictive models, especially with WMO91L,
L96, and SGO02. Even inside the surf zone, these models agree reasonably well with
measured ripples except near the shoreline. All models, however, over-predict ripple
height and steepness near the shoreline (open circles) in both Test 1 and Test 3. This

observation suggests that some other physical mechanisms must strongly affect the

formation of ripples near the shoreline. For example, and most likely, broken wave
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turbulence penetrates to the bottom boundary layer in the shallow water depth and
cause wash-out of any bed forms.

Figures C-5 and C-6 exhibit the same distributions of measured ripple geome-
try as Figures C-1 and C-2 but also show predicted ripple geometries obtained from
WMOI1L, which appears to yield relatively reasonable predictions in this particular
experimental case. In the figure, dashed lines are predictions when skin friction wave
Shields Parameter was used as originally proposed by Wikramanayake and Madsen
(1991). Solid lines are predictions when the maximum skin friction Shields parame-
ter, ¢/, based on combined wave and current flow, was substituted instead instead

of ¥, s Computation schemes for predictions of ¢, is discussed in Appendix D.

/
w,rms

Applying ¢/ instead of somehow accounts for the increase of flow intensity due
to the mean shear current while dashed lines only account for waves. The difference
between solid lines and dashed lines are more significant in Test 3 (Figure C-6) be-
cause Test 3 is closer to the sheet flow bed condition and ripple height decreases more
dramatically with increasing 7, as seen in Figures C-3 and C-4. As seen in Figure

C-6, predictions based on ¢/, (solid lines) yield smaller ripple height and steepness

/
w,rms

that those applying (dashed lines). This decrease of ripple height and steep-
ness apparently improves the predictive skills of ripple geometry especially near the
shoreline (X (m) ~ —3). However, the model still over-predicts ripple heights at
-5 < X (m) < =3 and —14 < X (m) < —11. It is interesting to note that these
areas are where wave breaking is extensive. As seen in the Figure 2-22 in Chapter
2, most incident waves first break near the bar crest, —14 < X (m) < —11, and
recovered broken waves resume breaking near the shoreline, —5 < X (m) < —3. This

observation suggests that broken wave turbulence reaches the bottom in these regions

and affect the ripple geometry.
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Figure C-3: Comparisons of predicted and measured ripple height, 7., and steepness,
N/ A, as a function of non-dimensional parameter, Z = 4y, ... /S for the experimental
case by Wang et al. (2002) (Test 1; spilling breakers). Measurements outside the
surf zone (X (m) < —14, triangles), inside the surf zone (—14 < X (m) < —5, full
circles), and near the shoreline (X (m) > —5, open circles). Models are WM9I1F
(Wikramanayake and Madsen, 1991, field), WM91L (Wikramanayake and Madsen,
1991, laboratory), SG02 (Styles and Glenn, 2002), L96 (Li et al., 1996), N81 (Nielsen,

1981), and WH94 (Wiberg and Harris, 1994).
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Figure C-4: Comparisons of predicted and measured ripple height, 7,, and steepness,
N/ A, as a function of non-dimensional parameter, Z = 4y, ... /S for the experimental
case by Wang et al. (2002) (Test 3; plunging breakers). Measurements outside the
surf zone (X (m) < —14, triangles), inside the surf zone (—14 < X (m) < —5, full
circles), and near the shoreline (X (m) > —5, open circles). Models are WM9I1F
(Wikramanayake and Madsen, 1991, field), WM91L (Wikramanayake and Madsen,
1991, laboratory), SG02 (Styles and Glenn, 2002), L96 (Li et al., 1996), N81 (Nielsen,

1981), and WH94 (Wiberg and Harris, 1994).
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Figure C-5: Cross-shore distributions of measured and predicted ripple height, 7,,
steepness, 1, /A, and water depth. Measurements (Test 1: spilling breakers) by Wang
et al. (2002) (full circles) and predictions by Wikramanayake and Madsen (1991)
(dashed line based on v ; full line based on ).

w,rms?
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Figure C-6: Cross-shore distributions of measured and predicted ripple height, 7,,
steepness, 7,/\, and water depth. Measurements (Test 3: plunging breakers) by
Wang et al. (2002) (full circles) and predictions by Wikramanayake and Madsen
(1991) (dashed line based on v, ; full line based on ).

w,rms?

287



Appendix D

Estimation of Skin Friction Shear
Stress under Combined Wave and

Current Fields

Under combined wave and current conditions, we require a special treatment to com-
pute skin friction shear stress. Provided that the equivalent bottom roughness, ky, is
known, the present nearshore curent model yields wave bottom boundary layer thick-
ness, 8, and the mean current velocity at the outer edge of the wave bottom boundary
layer, Us = (Us,Vs). From these current conditions and near-bottom wave orbital
velocity, skin friction shear stress is determined by the modified Madsen’s (1994)
wave-current bottom boundary layer model with skin friction bottom roughness, k.
Within the bottom boundary layer, z < 6, a new bottom boundary condition, based

on the skin friction shear velocity, is then determined by

/ /
Uy = —= 1n(6—> (D.1)

KpU,., 20

where zg = k; /30 and v, is the maximum combined wave-current skin friction shear

velocity, defined as
U = T/ P = CTiom /P (D.2)
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with

2
7! 7!
C';L = \ll + 2 |cos (| = + (T/ ) (D.3)
1

where ¢, denotes the angle between wave and current skin friction shear stress, 7..

The skin friction boundary layer thickness, ¢', is determined by

§ = AZtm (D.5)

—0.071

A = exp [2.96 (C;Abm/krgv) —1.45} (D.6)

/

The skin friction factor, f.,,

introduced in (D.4) is the combined wave-current skin
friction factor, upm (= U /2 for periodic waves or = Upppms/2 for random waves) is the
amplitude of the near-bottom wave orbital velocity obtained from the wave model and
Apm = Upm /w 1s the corresponding bottom excursion amplitude. f!  can be obtained
from (4.26) in Chapter 4 by replacing ky by kjy, i.e.
Cpexp (7.02X' 007 —8.82) 0.2 < X' < 10?
few = max (D.7)
Cpexp (5.61X" %19 —7.30) 10% < X'
with X' = ] Apn/kly. Combined with the bottom boundary condition, (D.1), the

mean current velocity above the skin friction boundary layer but below the outer edge

of the bottom boundary layer, i.e. ¢ < z < §, is expressed as

/

T <
U — ¢ InZ 4,
pral, &
1 R T
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with 2, = k/y/30. The skin friction current shear stress, 7. = pu/2 is determined by

substituting U = Us at 2 = 6 in (D.8) as

In &

In$ 1 1 Us In—-

/ / &' zZo
e — Yam / -5t -+ D.9
“ “ In —jo 2 4 Ku;m (1 %)2 ( )

The direction of the mean skin friction shear stress, 77, is parallel to the mean current
velocity at the outer edge of the bottom boundary layer, i.e. Us = (Us,Vs). The
newly obtained . is applied to compute C), in (D.3) and the same procedures are

repeated until u/, converges.
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of longshore sediment transport observed near the shoreline and the wave breaking point for plunging breakers.
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